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ESTIMATION, REGRESSION, CLASSIFICATION

MMSE Estimation

Linear/Affine MMSE Est.

FIR Wiener filtering
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stochastic gradient and 
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learning with SGD
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statistical models data driven 



PROBLEM: ESTIMATE 𝑌(𝑡) FROM 𝑿 𝑡 = 𝒙

• Problem: Given a vector observation 𝑿 𝑡 = 𝒙, we would like to 

estimate 𝑦(𝑡)  via linear filter ො𝑦 = 𝒘𝑇𝒙  with minimized mean 

squared error (MSE).

LMMSE Estimator                        ො𝑦 = 𝒘𝑇𝒙 𝑥

• The objective (cost function) to be minimized is MSE = 𝔼ሼ

ሽ

ሾ

ሿ

𝑦 𝑡 −

𝒘𝑇𝒙 2 . The filter design variables are 𝒘.



ESTIMATION

• What is Estimation?

◦ In machine learning/signal processing/controls, often need to 

make predictions based on real world observations.

◦ Process known as inference or estimation. 

• What is LMMSE?

◦ Estimates are given as linear combination of observations!



KEY IDEAS FOR RANDOM VECTORS

• Nx1 random vectors — generalization of 2x1

• Complete statistical description vs Second moment 

description

◦ Directional preference (KL expansion)

• Gaussian processes and linear processing

• Linearity of the expectation operator

expectation commutes with any linear operation

𝔼 𝐿 𝒙(𝑡) = 𝐿 𝔼 𝒙 𝑡



RANDOM VECTORS

𝑿 𝑡 =

𝑋1 𝑡

𝑋2 𝑡
⋮

𝑋𝑁 𝑡

Complete statistical 

description

Second Moment

Description

random vector (𝑁 × 1)

𝑝𝑿 𝑡 𝒙 = 𝑝𝑋1 𝑡 ,𝑋2 𝑡 ,…,𝑋𝑁 𝑡 𝑥1 𝑡 , 𝑥2 𝑡 , … , 𝑥𝑁(𝑡)
(pdf or cdf or pmf)

𝒎𝑿 = 𝔼 𝑿 𝑡

𝑹𝑿 = 𝔼 𝑿 𝑡 𝑿𝑇 𝑡

𝑹𝑿 𝑖,𝑗 = 𝔼 𝑋𝑖 𝑡 𝑋𝑗 𝑡

𝑲𝑿 = 𝔼 𝑿 𝑡 − 𝒎𝑿 𝑿 𝑡 − 𝒎𝑿
𝑇

= 𝑹𝑿 − 𝒎𝑿𝒎𝑿
𝑇

𝑲𝑿 𝑖,𝑗 = Cov 𝑋𝑖 𝑡 , 𝑋𝑗 𝑡

mean vector

correlation matrix

covariance matrix



KARHUNEN–LOÈVE (KL) EXPANSION

These are an alternate coordinate systems (rotations, reflections)

in this eigen-coordinate system, the components are uncorrelated

The eigen-values are the variance (energy) in each principal directions

“principal components”

(reduce dimensions by "throwing out" low-energy components)

Can always find orthonormal set of e-vectors of 𝐊



KL-EXPANSION

𝑲𝑿𝒆𝑘 = 𝜆𝑘𝒆𝑘  𝑘 = 1, 2, … , 𝑁

𝒆𝑘
𝑇𝒆𝑙 = 𝛿 𝑘 − 𝑙 , 𝜆𝑘 ≥ 0

𝑿 𝑡 = ෍

𝑘=1

𝑁

𝑋𝑘 𝑡 𝒆𝑘

𝑋𝑘 𝑡 = 𝒆𝑘
𝑇𝑿 𝑡

𝔼 𝑋𝑘 𝑡 𝑋𝑙 𝑡 = 𝒆𝑘
𝑡 𝑲𝑋𝒆𝑙 = 𝜆𝑘𝛿 𝑘 − 𝑙

𝑲𝑿 = ෍

𝑘=1

𝑁

𝜆𝑘𝒆𝑘𝒆𝑘
𝑡 = 𝑬𝚲𝑬𝑇

𝔼 𝑿 𝑡 2 = tr 𝑲𝒙 = ෍

𝑘=1

𝑁

𝜆𝑘

Eigen equation

orthonormal eigen vectors

change of coordinates

uncorrelated components

Mercer’s Theorem

Total Energy

Always exists because 𝑲𝑿 is symmetric and positive semi- definite (PSD)



KL-EXPANSION EXAMPLE

generated with 𝑾(𝑡) Gaussian Gaussian pdf contours

𝑿 𝑡 = 𝑯 𝑾 𝑡

𝑯 =
1 2
1 −2

𝑲 = 𝑯𝑲𝑾𝑯𝑇 = 𝑯𝑯𝑇 =
5 −3

−3 5

𝑬 =
1

2

+1 +1
+1 −1

𝚲 =
2 0
0 8



LINEAR/AFFINE MMSE (LMMSE AND AMMSE)

𝒇opt 𝒙 = 𝒎𝒚|𝑿 𝒙

= 𝔼 𝒚 𝑡 |𝑿 𝑡 = 𝒙(𝒕)

= න 𝒚 𝑝𝒚|𝑿 𝒚 𝒙 𝑑𝒚

with no constraint, this is the conditional expectation function

estimate 𝒀 𝑡 from 𝐗 𝑡 = 𝑥

min
f x

E y t − f x t
2



LMMSE ASSUMPTIONS

𝑓(𝒘)

𝒘

𝛁𝒇 𝒘∗ = 𝟎

𝒘∗ = 𝑅𝑿
−1 𝒓𝑿𝒀

Assume that we know the second order statistics of the joint 

distribution 𝑝𝑿 𝑡 ,𝑌 𝑡 𝒙, 𝑦

 i.e., 𝒎𝑿, 𝑚𝑌, 𝑅𝑿, 𝑟𝑌 , 𝒓𝑋𝑌.

The objective is a quadratic function of 𝒘,

𝑓 𝒘 = 𝔼 𝑌 𝑡 − 𝒘𝑇𝒙 2

= 𝑟𝑌 − 2𝒓𝑌𝑿
𝑇 𝒘 + 𝒘𝑇𝑅𝑿𝒘

The global optimal occurs at 𝒘∗.

 i.e., ∇𝑓 𝒘 |𝒘=𝒘∗ = 𝟎



MINIMUM MEAN-SQUARE ERROR ESTIMATION (MMSE)

Affine MMSE

Estimate 𝐲(𝐮) from 𝐱(𝐮) = 𝐱 cross covariance matrix

Linear MMSE

- affine often called linear…  same when means are zero

- Conditional Expectation better than affine, affine better than Linear

min
𝐟 x =𝐅x+𝐛

𝔼 𝐲 t − 𝐟 𝐱 t
2

min
𝐅,𝐛

𝔼 y t − 𝐅x t + 𝐛 2

𝐅AMMSE = 𝐊𝐘𝐗𝐊𝐗
−1

ො𝐲 = 𝐊𝐘𝐗𝐊𝐗
−1 𝐱 − 𝐦𝐗 + 𝐦𝐲

𝐛AMMSE = 𝐦𝐲 − 𝐅AMMSE𝐦𝐗

AMMS𝜀 = Tr 𝐊𝐘 − 𝐊𝐘𝐗𝐊𝐗
−1𝐊𝐗𝐘

min
𝐟 x =𝐅x

𝔼 𝐲 t − 𝐟 𝐱 t
2

min
𝐅

𝔼 𝐲 t − 𝐅𝐱 t 2

𝐅AMMSE = 𝐑𝐘𝐗𝐑𝐗
−1

ො𝐲 = 𝐑𝐘𝐗𝐑𝐗
−1𝐱 LMMS𝜀 = Tr 𝐑𝐘 − 𝐑𝐘𝐗𝐑𝐗

−1𝐑𝐗𝐘

𝐊𝐘𝐗 = 𝔼 𝐲 t − 𝐦𝐘 𝐱 𝐭 − 𝐦𝐗
T = 𝐊𝐘𝐗

T



PROOF FOR LMMSE

min
F

𝔼 y t − FX t 2

MSE F = 𝔼 y t − FX t 2

= 𝔼 y t − Foptx t + Fopt − F x t
2

= 𝔼 y t − Foptx t
2

+ Tr Fopt − F RX Fopt − F
T

+ 2 Tr Ryx − FoptRX Fopt − F
T

Proof:

Wiener-Hopf equations, aka Orthogonality Principle

if: then:FoptRX = RXY MSE F = 𝔼 y t − FoptX t
2

+ Tr Fopt − F RX Fopt − F
T

≥0 ∀F, since RX is psd 

because of orthogonality 

principle (error and signal 

uncorrelated)

𝔼 y t − ොy t 2 = 𝔼 y t 2 + 𝔼 ොy t 2

= Tr Ry − RyxRx
−1Rxy

vTw = Tr wvT



GRADIENT DESCENT

• Instead of obtaining optimal 𝒘∗ directly, we can also 

find it iteratively via

1. Initialize 𝒘0

2.  𝒘𝑛+1 = 𝒘𝑛 − 𝜂 ∇𝑓 𝒘𝑛

              = 𝒘𝑛 + 𝜂(𝒓𝒙𝑦 − 𝑅𝑥𝒘𝑛)

source: https://blog.clairvoyantsoft.com/

https://blog.clairvoyantsoft.com/


GAUSSIAN RANDOM VECTORS

𝐾 =
1 0
0 1

𝐾 =
1 0.7

0.7 1
𝐾 =

1 −0.4
−0.4 1

𝐾 =
2 0
0 1

𝐾 =
𝜎1

2 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2

𝑝𝑥 𝑡 𝑥 = 𝒩𝑁 𝑥; 𝑚𝑥, 𝐾𝑋

=
1

2𝜋 𝑁/2 𝐾𝑥

exp −
1

2
𝑥 − 𝑚𝑥 𝐾𝑥

−1 𝑥 − 𝑚𝑥

𝑝𝑥 𝑡 𝑥 = 𝒩𝑁 𝑥; 0, 𝐼

=
1

2𝜋 𝑁/2
exp −

1

2
𝑥 − 𝑚𝑥

2

= ෑ

𝑘=1

𝑁

𝒩1 𝑥𝑘; 0,1



GAUSSIAN RANDOM VECTORS

any linear processing of Gaussians yields Gaussians

if is Gaussian (i.e., 𝒙(𝑢) and n(𝑢) jointly-Gaussian), then:

is Gaussian

is Gaussian

is Gaussian

any subset of these random variables is also Gaussian

Jointly-Gaussian

common in EE!

𝑥 𝑡
𝑛 𝑡

𝑦 𝑡

𝑥 𝑡
𝑦 𝑡

𝑥 𝑡
𝑛 𝑡
𝑦 𝑡



MMSE ESTIMATION: SPECIAL CASE JOINTLY-GAUSSIAN

Conditional Gaussian pdf:

JG… no ML or 

deep learning 

needed!

𝑝𝑦 𝑡 |𝑥 𝑡 𝑦|𝑥 =
𝑝𝑋 𝑡 ,𝑌 𝑡 (𝑥, 𝑦)

𝑝𝑋 𝑡 𝑥

=
𝒩𝑀+𝑁

𝑥
𝑦 ;

𝑚𝑋

𝑚𝑌
,

𝐾𝑌 𝐾𝑋𝑌

𝐾𝑌𝑋 𝐾𝑌

𝒩𝑁 𝑥; 𝑚𝑋, 𝐾𝑋

= 𝒩𝑀 𝑦; 𝑚𝑌 + 𝐾𝑌𝑋𝐾𝑋
−1 𝑥 − 𝑚𝑋

AMMSE estimator

, 𝐾𝑌 − 𝐾𝑌𝑋𝐾𝑋
−1𝐾𝑋𝑌

error covariance

For JG observation and target: 𝔼ሾ𝒀|𝒙ሿ is the Affine MMSE estimator

Estimate 𝐲(𝐮) from 𝐱(𝐮) = 𝐱



REMARKS

1. Closed-form global optimality can be derived if we have a 

convex and differentiable cost function.

2. Gradient descent works in any differentiable cost function.

3. What if we don’t have second order statistics but lots of samples?  

Use LMS!

 Single point gradient descent or small batch gradient descent!

𝑅𝑥 computation not tractable for large number of samples  



LMS ALGORITHM

• Suppose time index 𝑛 and you have samples ሼ 𝒙𝑛, 𝑦𝑛 ሽ instead of the second 

order statistics then we use an online learning algorithm called least mean 

square adaptive filtering 

◦ Introduced by Widrow and Hopf (1959).

𝑦𝑛 = ෍

𝑙=1

𝑁

𝑤𝑙𝑥𝑛−𝑙 = 𝑤𝑇𝑣𝑛 𝑤 =

𝑤1

𝑤2

⋮
𝑤𝐿

𝑣𝑛 = 𝑥𝑛− 𝐿−1 =

𝑥𝑛

𝑥𝑛−1 

⋮
𝑥𝑛−𝐿+1



LMS ALGORITHM

• Assumptions:

◦ Observe 𝑦(𝑛)  =  𝑠(𝑛)  + Noise and no access to the data signal 𝑠(𝑛). 

◦ Have a reference noise signal 𝑥(𝑛) with strong correlation to actual 

noise signal

• Why we need this?: 

◦ Slowly drifting interfering sinusoid so notch filter is insufficient

• Benefits:

◦ Behaves as an adaptive notch filter

◦ The notch can be very sharp, depending upon step size 



𝑦𝑛

ො𝑦𝑛𝑥𝑛

Source: Simon Haykin, Adaptive Filter Theory (5th Edition), Pearson, Section 6.3, Application 4: Adaptive Noise Cancelling Applied to a Sinusoidal Interference

• The reference input supplies 

a correlated version of the 

sinusoidal interference. 

• For the adaptive filter, we 

may use an FIR filter whose 

tap weights are adapted by 

means of the LMS algorithm



LMS HISTORY/EXAMPLE

Widrow and Hopf,  Adaptive Linear Element (ADALINE)

(developed LMS for adaptive antenna array processing)

point a beam at the desired speaker and learn

to cancel noise energy in other directions using LMS

ifixit.com



STEEPEST DESCENT AND LMS

Steepest descent using (ensemble average) gradient:

Single Point Stochastic Gradient Descent:

this is called “on-line learning”

when 𝑛 ~ time, this is the Adaptive 

Least Mean Square (LMS) filter

when 𝑛 does not represent time can 

average the gradient over more data 

points to improve approximation 

(batching)

𝐸 𝑤 = 𝔼 𝑦 𝑡 − 𝑤𝑇𝑥 𝑡 2 ∇𝑤𝐸 = 2𝔼 𝑤𝑥 𝑡 𝑥𝑇 𝑡 − 𝑦 𝑡 𝑥 𝑡

= 2 𝑤𝑡𝑅𝑥 − 𝑟𝑥𝑦

ෝ𝑤𝑛+1 = ෝ𝑤𝑛 −
𝜂

2
∇𝑤𝐸

= ෝ𝑤𝑛 + 𝜂 𝑟𝑥𝑦 − 𝑅𝑥 ෝ𝑤𝑛

−
1

2
∇𝑤𝐸 = 𝑟𝑥𝑦 − 𝑅𝑋𝑤

= 𝔼 𝑦 𝑡 𝑋 𝑡 − 𝑋 𝑡 𝑋𝑇 𝑡 𝑤

≈ 𝑦𝑛𝑥𝑛 − 𝑥𝑛𝑥𝑛
𝑇𝑤

= 𝑦𝑛 − 𝑥𝑛
𝑇 ෝ𝑤𝑛 𝑥𝑛

ෝ𝑤𝑛+1 = ෝ𝑤𝑛 + 𝜂 𝑦𝑛 − ෝ𝑤𝑛
𝑇𝑥𝑛 𝑥𝑛

Estimate 𝐲(𝐮) from 𝐱(𝐮) = 𝐱



LMS ALGORITHM IS ADAPTIVE FIR FILTER

𝑦𝑛 = ෍

𝑙=1

𝑁

𝑤𝑙𝑥𝑛−𝑙

= 𝑤𝑇𝑣𝑛

𝑤 =

𝑤1

𝑤2

⋮
𝑤𝑁

𝑣𝑛 = 𝑥𝑛− 𝐿−1 =

𝑥𝑛

𝑥𝑛−1 

⋮
𝑥𝑛−𝐿+1

Single Point Stochastic Gradient Descent:

−
1

2
∇𝑤𝐸 = 𝑟𝑣𝑛𝑦𝑛

− 𝑅𝑣𝑛
𝑤

= 𝔼 𝑦 𝑡 𝑣𝑛 𝑡 − 𝑣𝑛 𝑡 𝑣𝑛
𝑇 𝑡 𝑤

≈ 𝑦𝑛 − 𝑤𝑛
𝑇𝑣𝑛 𝑣𝑛

ෝ𝑤𝑛+1 = ෝ𝑤𝑛 + 𝜂 𝑦𝑛 − 𝑤𝑛
𝑇𝑣𝑛 𝑣𝑛

= ෝ𝑤𝑛 + 𝜂 𝑦𝑛 − ො𝑦𝑛 𝑣𝑛

= ෝ𝑤𝑛 + 𝜂𝑒𝑛𝑣𝑛

(an online linear regressor)

LMS Algorithm



LMS ALGORITHM AS ADAPTIVE FIR FILTER

LMS algorithm:

If and do not change with 𝑛, 

If these correlations vary with time, the LMS filter will adaptively track them

ෝ𝑤𝑛+1 = ෝ𝑤𝑛 + 𝜂 𝑦𝑛 − 𝑤𝑛
𝑇𝑣𝑛 𝑣𝑛

𝑅𝑣𝑛
𝑟𝑣𝑛𝑦 = 𝔼 𝑣𝑛 𝑡 𝑦 𝑡

ෝ𝑤𝑛 →≈ 𝑤𝐿𝑀𝑀𝑆𝐸 = 𝑅𝑣
−1𝑟𝑣𝑦



LMS ALGORITHM: FOR SINUSOIDAL NOISE 

CANCELLATION

Same nature as 

Sinusoidal noise 

Information bearing part Sinusoidal noise 



EXPERIMENT: LMS EXAMPLE

Generate data:

𝜂 = 0.05, SNR = 10 dB

averaged over 500 runsaveraged over 500 runssingle run

this is the ideal case where model 

and observed data are matched



EXPERIMENT: LMS EXAMPLE

larger learning rate means faster convergence 

but more misalignment (gradient noise)

even the optimal Wiener (LMMSE) filter will 

have higher MMSE when the SNR is lower

Generate data:



EVOLUTION OF THE LMS ALGORITHM



MMSE SUMMARY

1. Estimation using statistical models

2. Best MMSE estimator (unconstrained) is conditional expectation

◦ Requires complete statistical description of observed and desired — i.e., 𝑝(𝒚|𝒙) 

3. Linear/affine MMSE estimator have closed form equations

◦ Require only the second moment description of observed and desired — i.e., 

means, correlations

4. For jointly Gaussian observed and desired – 2 & 3 are the same!

5. The LMS algorithm is an algorithm that approximating the LMMSE   cost 

function gradient with a single realization. 
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