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statistical models

MMSE Estimation
Linear/Affine MMSE Est.

FIR Wiener filtering

ESTIMATION, REGRESSION, CLASSIFICATION

data driven

general regression
linear LS regression

stochastic gradient and

—4 GD, SGD, LMS _

Bayesian decision theory
Hard decisions

soft decisions (APP)

assification from data
linear classifier

logistical regression

sufficient statistics

(perceptron)
ML/MAP parameter e
. regularization
estimation
Karhunen-Loeve expansion PCA

feature design

neural networks

for regression and
classification

learning with SGD

working with data
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PROBLEM: ESTIMATE Y(t) FROM X(t) = x

 Problem: Given a vector observation X(t) = x, we would like to
estimate y(t) via linear filter y = wlx with minimized mean

squared error (MSE).

X LMMSE Estimator

v
A
Il
<
=

 The objective (cost function) to be minimized is MSE = E{[y(t) —

w! x]?}. The filter design variables are w.
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ESTIMATION

« What is Estimation?

> In machine learning/signal processing/controls, often need to

make predictions based on real world observations.

o Process known as inference or estimation.

* What is LMMSE?

o Estimates are given as linear combination of observations!
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KEY IDEAS FOR RANDOM VECTORS

* Nx1 random vectors — generalization of 2x1

« Complete statistical description vs Second moment
description

o Directional preference (KL expansion)
« Gaussian processes and linear processing

« Linearity of the expectation operator

E{L(x(t))} = L(Etx(0)})

expectation commutes with any linear operation
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RANDOM VECTORS

[X1(t)]
random vector X(t) = XZ,(t) (N x1)
| Xy (1)
C lete statistical
dg:;f,-;t,-gns e Px() () = Dx,(0),%,(0), .. xn 0 (X1 (), x2(8), e, 2 (8))
my = E{X(t)} mean vector
Ry = E{X()XT(t)} correlation matrix
Second Moment [RX]i,j _ IE{Xi(t)Xj(t)}

Description

Ky = E{(X(t) — myx)(X(t) — mX)T} covariance matrix
= RX — me};

[Kx];; = Cov|X;(©), X; (D]
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KARHUNEN-LOEVE (KL) EXPANSION

Can always find orthonormal set of e-vectors of K

These are an alternate coordinate systems ( )

in this eigen-coordinate system, the components are uncorrelated

“principal components”

The eigen-values are the variance (energy) in each principal directions

(reduce dimensions by “throwing out” low-energy components)
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KL-EXPANSION

KXek = Akek k = 12,..,N Eigen equation
e?\:el = 5[/( — l], Ak >0 orthonormal eigen vectors
N
X(t) = Z Xy (t)ey change of coordinates
k=1

X, (t) = e[ X(t)

E{X,(t)X;(t)} = eiKXel = A6k — 1] uncorrelated components
N
Ky = Z Akekeltc — EAET Mercer’s Theorem
k=1
N
E(IXO1%) = tr(K) = ) & Total Energy
k=1

Always exists because Ky is symmetric and positive semi- definite (PSD)
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KL-EXPANSION EXAMPLE

X(t) = HW(t)
K = HKyH"
1 2
H=1 —2]

generated with W(t) Gaussian

— HHT =

S 3 el

Gaussian pdf contours
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LINEAR/AFFINE MMSE (LMMSE AND AMMSE)

estimate Y (t) from X(t) = x

min {ly® — x|’}

with no constraint, this is the conditional expectation function

fopt(x) = my|X(x)

= Ely(®O1X(®) = x(t)}

= j Y pyix(y|x)dy
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LMMSE ASSUMPTIONS

Assume that we know the second order statistics of the joint

distribution py) v (x, ¥)

i.e., my, my, Ry, 1y, Txy.

The objective is a quadratic function of w,

fw) = E{[Y () —w'x]?}

=1y — 2ryxw + w/ Ryw

The global optimal occurs at w*.

i.e., VfW)ly=w* =0

fw)

Viw*) =0
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MINIMUM MEAN-SQUARE ERROR ESTIMATION (MMSE)

Estimate y(u) from x(u) = x
Kyx = E{(y(t) — my)(x(t) — mg)T} = [Kyx]T

Affine MMSE
f(x) Fx+b {HY(t) —f(x(®)|| } Fammse = KyxKx! bammse = My — Faommsemx
min E{lly(t) — [Fx(t) + b]II*} 9 = KyxKx'(x — my) + m, AMMSe = Tr(Ky — KyxKx Kxy)
Linear MMSE
((in_ E {HY(t) —f(x®)|| } Fammse = RyxRx'

min E{[ly(t) - Fx(®)1*} ¥ = RyxRx'x LMMSe = Tr(Ry — RyxRx'Rxy)
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PROOF FOR LMMSE

mFin E{lly(t) — FX()|I*}

MSE(F) = E{lly(t) — FX(©)|I*}
= E{]| (4 — Fopex®) + (Fope - x|}
= B{Iy© ~ FapexOI '} + T ((Fopr ~ )Rx(Fopu = F)')

+2Tr ((Ryx — FoptRX) (Fopt - F)T)

FoptRx = Rxy MSE(F) = E {||y(t) — Foth(t)”z} + Tr ((Folot — F)Rx(Fopt — F)T)

1 >0 VF, since Ry is psd
Wiener-Hopf equations, aka Orthogonality Principle

because of orthogonality
principle (error and signal

ﬁ . l uncorrelated)
y E{lly(® —y®II*} = E{Ily®II*} + E{IFO1I*}

space of all estimates/approximations = TI‘(Ry - Ryx R;(l ny)
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GRADIENT DESCENT

* Instead of obtaining optimal w* directly, we can also
find it iteratively via
1. Initialize w,

2. Wi = Wp — 1 Vf(wy)

Initial

Gradient
Weight ,'
Cost \ l' /
1
’
1

Incremental

Step \ ’

1

I

J

/'

]

]

/ 2

Minimum Cost
Derivative of Cost /

.
>

Weight

source: https://blog.clairvoyantsoft.com/
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GAUSSIAN RANDOM VECTORS

Px(o (x) = Ny (x; my, Kx) Px(t) (x) = Ny(x;0,1)

= ! — l( — K—l _ 1 1 2
= GO |Kx_| exp 5 x —my)Ke " (x —my) = Wexp 5 |x — m,|| )
N
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GAUSSIAN RANDOM VECTORS

x(u) y(u)
" ¢

n(u)

any linear processing of Gaussians yields Gaussians

if [xgtg is Gaussian (i.e., x(u) and n(u) jointly-Gaussian), then:
n(t

y(t) is Gaussian

x| i< Gaussian Jointly-Gaussian
[3’(t) = common in EE!
x(t)
n(t) is Gaussian
y(t)

any subset of these random variables is also Gaussian
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MMSE ESTIMATION: SPECIAL CASE JOINTLY-GAUSSIAN
Estimate y(u) from x(u) = x

Conditional Gaussian pdf:

N Y JG... no ML.or
Pyx) VIx) = ) deep learning
PxmX needed!
X| [mx] [ Ky Kxy
_ Noen ([3’] ’ [mY] ’ [KYX Ky ])
Ny (x; my, Ky)

= Ny (¥ my + KyxKx ' (x —my) , Ky — KyxKx  Kxy
AMMSE estimator  error covariance

For JG observation and target: E[Y]|x] is the Affine MMSE estimator
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REMARKS

1. Closed-form global optimality can be derived if we have a

convex and differentiable cost function.
2. Gradient descent works in any differentiable cost function.

3. What if we don’t have second order statistics but lots of samples?
Use LMS!

R, computation not tractable for large number of samples
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LMS ALGORITHM

» Suppose time index n and you have samples {(x,,y,,)} instead of the second
order statistics then we use an online learning algorithm called least mean

square adaptive filtering

o |ntroduced by Widrow and Hopf (1959).

AR S Ak AR . g
N N N N Jn
r ' A A
wo ) wy ) y wa wr—-2 § wr,—1
I
" = [ = D > — D = [ 1 [ﬂ, - L]
N (W1 Xn
_ — T W> Xn-1
Yn = z WiXn-1 =W Up w=| . Up = Xn—(L-1) = ;
=1
wp | Xn—L+1.
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LMS ALGORITHM

« Assumptions:

o Observe y(n) = s(n) + Noise and no access to the data signal s(n).

o Have a reference noise signal x(n) with strong correlation to actual

noise signal

*  Why we need this?:

o Slowly drifting interfering sinusoid so notch filter is insufficient

* Benefits:
o Behaves as an adaptive notch filter

o The notch can be very sharp, depending upon step size
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Primary
Vn mput O

d(n)

Reference

input O
n u(n)

Adaptive
filter

-

FIGURE 6.6 Block diagram of adaptive noise canceller.

Error
signal

e(n)

Syslem
output

Source: Simon Haykin, Adaptive Filter Theory (5th Edition), Pearson, Section 6.3, Application 4: Adaptive Noise Cancelling Applied to a Sinusoidal Interference
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LMS HISTORY/EXAMPLE

A

Back lobe

ifixit.com

point a beam at the desired speaker and learn
to cancel noise energy in other directions using LMS
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STEEPEST DESCENT AND LMS

Estimate y(u) from x(u) = x
E(w) = E{[y(t) —w'x()]*} VwE = 2E{wx(t)x" (t) — y(t)x(t)}

= 2(W'Ry — 1yy)
Steepest descent using (ensemble average) gradient:

~ ~ n
Wnt1 = Wn — (E) VwE
= Wn + 77(7‘xy - Ran)

Single Point Stochastic Gradient Descent:

—EVWE = Tyxy — Rxw

= E{y(©)X(t) - X)X (t)w}

~ _ T
~ YnXn XnXnW

= (yn - xz;wn)xn

Wn+1 = Wn + 77(3’n - Wg;xn)xn
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LMS ALGORITHM IS ADAPTIVE FIR FILTER

DD, N N
Y Y Y N .

Wo ) wy A W2 Wp—-2 , WrL—-1 4

n - D - D . e J D - D v[n — L]

wWq
N Wy
— w=1.
Yn = WiXn—1 :
=1

Wn
=wly,

Single Point Stochastic Gradient Descent:

1
_EVWE = Tynyn - RvnW Wn+1 = Wn + r’(yn —_ W‘r’llwvn)vn
= E{y(®)v,(t) — vo (V] ()W} = Wn + 1V — P)vn

=W, +ne,v
~ T
~ (Yn — Wp Un)vn n e 7 Yn
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LMS ALGORITHM AS ADAPTIVE FIR FILTER

LMS algorithm: w,,,., = w, + n(yn — W,fvn)vn

If Ry, and t,y = E{vh,(0)y(©)} do not change with n,
Wy, == Wiymse = Ry 'y

If these correlations vary with time, the LMS filter will adaptively track them
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LMS ALGORITHM: FOR SINUSOIDAL NOISE
CANCELLATION

Information bearing part Sinusoidal noise

Primary mput:
y(n) = s(n)  Ap cos(won + ¢p)

Reference mput:
Same nature as

I(”) = A CDE‘(WD” + O) Sinusoidal noise

s(n) = information bearing signal / data signal.
LMS: get current estimate and error:

Update filter tap weights:

ﬁr1-1+1 = ﬁrn + ne (n)vn

= ﬁrn + ??(1"(”) - ﬁrn Vn}vn
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EXPERIMENT: LMS EXAMPLE

Generate data:

10 "
084 \\\ “,} Yn
Ty Un o
h Zn 064 .
—_— -
m R
T 047 \\‘ eﬂ J -
02 v, §© 29
an [ n
0.0 1

T T T T T T T T T 7 =
000 025 050 @75 100 125 150 175 200 1 n
n

noisy target

this is the ideal case where model n = 0.05, SNR =10 dB
and observed data are matched

Learning Curve

Coefficents Coefficents (averaged)
10
10 -2
0.9
08 - 08 1 4]
il w07 -
o w Wi =]
£ 06 & g
7 E 06 wo g
o o =
o
* 04 £ 05
0.4 -8 1
02
03
- - - - - - 02 -10 1
0 100 200 300 400 500 ' ' ' ' ' ' ' . o0 0 = 0 0
updates ] 100 200 300 400 500
updates updates

single run

averaged over 500 runs averaged over 500 runs
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MSE (dB}

MSE (dB)

EXPERIMENT: LMS EXAMPLE

Generate data:

Learning Curve

—— 10 dE, eta=0.15
10 dB, eta = 0.05

08

0.6

0.0

Impulse response

|

T T T T T T T T T
000 025 050 075 100 125 150 175 200
n

_ larger learning rate means faster convergence
but more misalighment (gradient noise)
Learning Curve
W even the optimal Wiener (LMMSE) filter will
have higher MMSE when the SNR is lower
-8 Ill;‘
10 “WMWMWWMWMW

updates
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EVOLUTION OF THE LMS ALGORITHM

1011
1010
10
108
107
108
105
104
103
102 F

NCD

Number of neurons (logarithmic scale)

€« S
1950 1985 2000 2015 2056

Figure 1.11: Increasing neural network size over time. Since the introduction of hidden
units, artificial neural networks have doubled in size roughly every 2.4 years. Biological

neural network sizes from ( ).
1. Perceptron ( , s )
2. Adaptive linear element ( N ) <
3. Neocognitron ( s )
4. Early back-propagation network ( s )
5. Recurrent neural network for speech recognition ( N )
6. Multilayer perceptron for speech recognition ( , )
7. Mean field sigmoid belief network ( ) )
8. LeNet-5 ( s )
9. Echo state network ( N )
10. Deep belief network ( s )
11. GPU-accelerated convolutional network ( s )
12. Deep Boltzmann machine ( , )
13. GPU-accelerated deep belief network ( y )
14. Unsupervised convolutional network ( s )
15. GPU-accelerated multilayer perceptron ( B )
16. OMP-1 network ( s )
17. Distributed autoencoder ( s )
18. Multi-GPU convolutional network ( s )
19. COTS HPC unsupervised convolutional network ( . )
20. GoogLeNet ( , )
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MMSE SUMMARY

1. Estimation using statistical models
2. Best MMSE estimator (unconstrained) is conditional expectation
o Requires complete statistical description of observed and desired — i.e., p(y|x)

3. Linear/affine MMSE estimator have closed form equations
o Require only the second moment description of observed and desired — i.e.,

means, correlations
4. For jointly Gaussian observed and desired - 2 & 3 are the same!
5. The LMS algorithm is an algorithm that approximating the LMMSE cost

function gradient with a single realization.
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