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REGRESSION OVERVIEW

» Regression is data fitting to a specific parameterized function class

* Linear regression

o Same as LMMSE, but with data averages replacing expectation

(ensemble averages)

o Generalize on-line learning to full-batch and mini-batches
» Regularization (later)

« Logistical Regression (later)
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GENERAL REGRESSION PROBLEM

Given a data set: D = {(X, V)4

General regression problem:

min(C(y, 805 ©))) Opr = argmin(C(y, g(x ©))), § = (% Oopt)

Empirical expectation (average over data):

1
_ 1 x ~ regressor (observed)
(h(x,y))s = |5|( Z Sh(Xn, Yn) y - target  (desired)
Xn.yn)€

For large averaging sets (i.e., many realizations):

Efh(x(®),y(®))} = f h(X, Y)Dx(0) .y X Y) dy dx = (h(x,¥))s

Monte Carlo method
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LEAST-SQUARES (LS) REGRESSION PROBLEM

N
min(ly -~ g ©l)p < min ) [lyn — 80 O
n=1

Oopt = arg mén(lIy - g(x; 9)”2)7)

Squared-error is a common cost function in (electrical) engineering

corresponds to power or energy in many applications
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LINEAR AND AFFINE LEAST SQUARES REGRESSION

Linear regression problem:

N
min(ly - Wxl?), © min > lly, — W,
n=1

Wiisg = arg m“i]n(lly - Wx|1?)
y = WriseX

Affine regression (a.k.a., Linear regression):
— C _ 2
WaLse, barsg = arg T‘YA}}E(”Y [Wx + b]|| )D

Y = WarseX + barse
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LINEAR AND AFFINE REGRESSION SOLUTION

Data averaging operator has linearity property like expectation
E{L(x(D))} = L (E(x(®)) (L) = L({x))

This means the solutions are the same as the MMSE
solutions with expectation replaced by data average

For example, Linear LS regression:

Wiisg = RyxRy!
LLse = RyxRy LLSe = (|ly — Wy sexI[?)

= (llyll* - IWpLsexII?),,

¥ = RyxRx'x SOt
= Tr(RY - RYXRX ny)

Re = (), Ruv = (7,

N N
— l X XT = l X T
=N nXn N n¥Yn
n=1




USCViterbi

School of Engineering

PROOF FOR LLSE REGRESSION
min([ly — Wx|1?),
LSE(G) = (lly — Gx||?)
N <”(Y — GopeX) + (Gope — G)X”2>
= (105 = GapeI”) + 17 (Gt - 6)R(Gopi — &)

+2Tr ((ﬁyx - Gopt§X)(G0pt - G)T>

GopcRx = Ryy LSE(G) = E{|ly - Goptx||2} + Tr ((Gopt — G)Rx(Gopt — G)T)

>0 VG, since Ry is psd

Wiener-Hopf equations (Orthogonality Principle)

because of orthogonality principle
ij (error and signal uncorrelated)
e l
Y (lly = 9112) = (liyll*) + (IIg11*)

_ —~ s = 15
space of all estimates/approximations - Tr(RY - RYXRX RXY)
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SOLUTION TO LINEAR AND AFFINE (LS) REGRESSION

It makes intuitive sense:

For LMMSE estimate: if you did not know the second moments you
would estimate these correlations from data

in addition to optimality in the Gaussian case, linear MMSE estimation is
popular because it requires much less data to accurately estimate second
moments than a complete statistical description (or higher moments)
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LLSE REGRESSION: SCALAR FROM SCALAR

Estimate y from x

Linear regression problem:

. N
min((y—wx)z) = min—Z(Yn — wxy)?
w w N
n=1

Solution (special case):

7
yx
WiLsE =
Tx LLSe = ([y - WLLSEx]Z) 30 1
£ = (y?) = ([wiLsex]?) B
~ _ lyx =
y=7X o "2 A1 5 20
Ty =1y — Tyxfy g
E 151
1 N if sample means all 0: .
fx=(x2)=—2x,21 5 |
N ~ ~
n=1 = 0-3%(1 - pZ) 0 3
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LLSE REGRESSION: SCALAR FROM SCALAR

Estimate y from x

Linear regression problem:

L&
min((y —wx)?) & min—Z(yn—wxn)Z s |y —wx|?
w w N

n=1

Solution (special case):

_yx
WLLSE = 3Ty (N)LLSe = |lyll* —

L _y'x
Y= e X = lyll* -

Y

space of all estimates/approximations

V1 X1

2 _ |2 _|*2

yT'x 5 Yy=1: X=1:
xix) Il Y xy

(y"x)*
|Ix]|?

this “stacked” approach vields the same as
the (-)p approach on the previous slides

10
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LLSE REGRESSION: SCALAR FROM VECTOR

Estimate y from x

Linear regression problem:

N
1
m“i,n <(y — WTX)2> < m“i,nﬁ Z(}’n - WTXn)Z
n=1

similar

ﬁxw = fxy

“Normal Equations”

: just change E[:] to (-)p in LMMSE result

11
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LLSE REGRESSION: SCALAR FROM VECTOR

Estimate y from x

Linear regression problem:

N
1
. _ T 2 . - _ T 2 . _ 2
mM}n<(y Wx)> =3 m‘;nNZ(yn Wx) = mM}nlly Xw||
n=

Solution (special case):

X1
VvV = T
y = Xw (N)LLSe = Tr(||y||2 — ||ny||2) X = lx.zl XT=[X; Xy - Xy]

w=(X"X) Xy = Tr(|I(1 — PYyII?)
5\' = X(XTX)_ley XTX — XTy
= Pxy

A 1

Ry'fy, = (=X"X] |=XT
space of all estimates/approximations X Xy N N y 12

normal equations
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THE AFFINE TO LINEAR MATH “TRICK”

w w

N
min <(y — wa)2> & min%Z (yn — wan)Z
n=1

~ \i4 ~ W
y=x" | 11[}] g=x | 1}
=x"w+b = Xw + b1
x] | 1]
X 1
X | 1]=|* : :
xy | 1l

therefore: compact notation even if using bias (b) term

13
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LINEAR CLASSIFIER

perform linear regression and then threshold to hard decision

y € {—1,+1}
9 = sign(wTx)

) +1, v=0
sign(v) = _q b <0

standard LLSE regression with prediction thresholding

linear_classifier_examples.ipynb

15
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EXAMPLE: LINEAR AND AFFINE REGRESSION

for the case with no bias term, the decision adding the bias term allows for offset
threshold must pass through the origin from the origin

16
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MAXIMUM LIKELIHOOD ESTIMATION EXAMPLE

this is a model for the data {(x,,, y,,)}:

yo=wlx, +v,, n=12..N
y = Xw + v(t)

Py (V) = Ny(v; 0,021)

Pyoixe) YIX; W) = pycey (y — Xw) = Ny (v; Xw, 621)

NLL(W) = = In (pyce) (y1X; w))

1 1
=-In v exp |~ lly — Xwll?
NS 20,
(2m02)2

1
= 2||y Xw]|? + —ln(27wv)

max Py(e)xe) (y1X; w) & min|ly — Xw||*

Maximum Likelihood <==> Minimize Neg-Log-Likelihood <==> LLSE regression

17
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PROPERTIES OF ML ESTIMATORS

« Asymptotically Gaussian:

o For large amounts of data, the ML estimate is Gaussian with mean equal to the

true parameter (models matched)

e Consistent:

o The limit in probability of the ML estimate is the true parameter (model

matched)

 The ML estimate minimizes the KL Divergence between the model

distribution and the empirical data distribution. KL divergence measures

the difference between two distribution (Info. Theory).

o Minimizing KL divergence in this case also corresponds to minimizing the cross

entropy

18
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ML ESTIMATION AND INFORMATION THEORY

Entropy: _ 1
Py H(X(t)) E {logz (px(t) (X(t)))}

1
Z Pxo) (k) lOgZ < Px (o) (k))
= Zk: Pk log; <ﬁ>

Intuition:

Examples:

H(X(t)) =log,(1/6) = 2.58 bits/roll

H(X(t)) = —0.410g;(0.4) — 0.110g,(0.1) — 0.011log,(0.01)
— 0.0910g,(0.09) — 0.2510g,(0.25) — 0.1510g,(0.15)
= 2.15 bits/roll

20
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ML ESTIMATION AND INFORMATION THEORY

Entropy of i.i.d. Bernoulli Source (with success probability p)

1.0 A

0.8 1

0.6 -

H(p)

0.4 4

0.2 4

0.0 4

H(p) = —plog,(p) — (1 — p)log,(1 — p)

0.0 0.2 0.4 0.6 0.8 1.0

21
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ML ESTIMATION AND INFORMATION THEORY

Px(X(1))
= Z Pk log (p—k>
- Dk

— 2 pi log(py) — Z Pk log(Pi)
k k

= CE(p,p) — H(p)

KL-Divergence DG I P) =E, {log <Px (x (ﬂ))}

Cross-Entropy CE(p. %) = E.. 11 ( 1 )
».P) ”{Og 5(X(D)

22
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ML ESTIMATION AND INFORMATION THEORY

ML parameter estimation minimizes empirical CE (and KL divergence)

Paata (V|X) = data distribution of the data (typically unknown)

Pmodel(V|X; ©) = modeled distribution of the data (function of parameters)

1
CE(Paatar Pmode1 (©)) = Epyacavl {log (pmodel(y(t) x(0); @))}

~ (—10g(Pmoaer (¥ I%; ©))),,

Max-Likelihood Estimation of
neural network weights is
always minimizing the
empirical cross entropy
between data distribution and
the modeled distribution

1 N
= — N 2 log(Pmodel(ynlxn; G)))
n=1

mélX pmodel(yp(; 0) e mein(_ log(pmodel (vIX; G))))

N
= mein <— Z lOg(pmodel(Ynlxn; 6))>

n=1

N
1
= mgn <— N Z 10g(pmodel(y'nlxn; G))>
n=1




USCViterbi

School of Engineering

MULTI-CLASS CROSS ENTROPY EXAMPLE (“ONE HOT?”)

One hot encoding:

Sample data labels: y=1
y =2
y=20
Classifier Output: 0.5 [ p(cat) p(dog) p(bird) ]
1.0
0.5

Loss = —%[log(O.S) + log(1.0) + log(0.4)]

N M
- 1
MCE(pdata' pmodel(W)) = N 2 Z [y, =m] log(pmodel(yn =m W))

n=1m=1

24
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