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REGRESSION OVERVIEW

• Regression is data fitting to a specific parameterized function class

• Linear regression

◦ Same as LMMSE, but with data averages replacing expectation 

(ensemble averages)

▪ Linear least-squares

◦ Generalize on-line learning to full-batch and mini-batches

• Regularization (later)

• Logistical Regression (later)
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GENERAL REGRESSION PROBLEM

3

Given a data set: 

Empirical expectation (average over data):

General regression problem:

For large averaging sets (i.e., many realizations): 

Monte Carlo method

sample mean

𝒙 ~ regressor   (observed)

𝒚 ~ target   (desired)

𝒟 = 𝐱𝑛, 𝐲𝑛 𝑛=1
𝑁

min
Θ

𝐶 𝐲, 𝐠 𝐱; Θ
𝒟

Θ𝑜𝑝𝑡 = arg min
Θ

𝐶 𝐲, 𝐠 𝐱; Θ
𝒟 ො𝐲 = 𝐠 𝐱; Θopt

𝐡 𝐱, 𝐲 𝒮 ≡
1

𝒮
෍

𝐱𝑛,𝐲𝑛 ∈𝒮

𝐡 𝐱𝑛, 𝐲𝑛

𝔼 𝐡 𝐱 𝑡 , 𝐲 𝑡 = න 𝐡 𝐱, 𝐲 𝑝𝑥 𝑡 ,𝑦 𝑡 𝐱, 𝐲 ⅆ𝐲 ⅆ𝐱 ≈ 𝐡 𝐱, 𝐲 𝒮



LEAST-SQUARES (LS) REGRESSION PROBLEM
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Squared-error is a common cost function in (electrical) engineering

corresponds to power or energy in many applications

min
Θ

𝐲 − 𝐠 𝐱; Θ 𝒟  ⇔  min
Θ

෍

𝑛=1

𝑁

𝐲𝑛 − 𝐠 𝐱𝑛; Θ 2

Θopt = arg min
Θ

𝐲 − 𝐠 𝐱; Θ 2
𝒟



LINEAR AND AFFINE LEAST SQUARES REGRESSION
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Linear regression problem:

Affine regression (a.k.a., Linear regression):

min
𝐖

𝐲 − 𝐖𝐱 2
𝒟

 ⇔  min
𝐖

෍

𝑛=1

𝑁

𝐲𝑛 − 𝐖𝐱𝑛
2

𝐖LLSE = arg min
𝐖

𝐲 − 𝐖𝐱 2
𝒟

ො𝐲 = 𝐖LLSE𝐱

𝐖ALSE, 𝐛ALSE = arg min
𝐖,𝐛

𝐲 − 𝐖𝐱 + 𝐛 2
𝒟

ො𝐲 = 𝐖ALSE𝐱 + 𝐛ALSE



LINEAR AND AFFINE REGRESSION SOLUTION
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Data averaging operator has linearity property like expectation

This means the solutions are the same as the MMSE 

solutions with expectation replaced by data average

For example, Linear LS regression:

𝔼 L 𝑥 𝑡 = L 𝔼 𝑥 𝑡 L 𝑥 = L 𝑥

𝐖LLSE = ෡𝐑𝐘𝐗
෡𝐑𝐗

−1

ො𝐲 = ෡𝐑𝐘𝐗
෡𝐑𝐗

−1𝐱

𝐿𝐿𝑆𝜀 = 𝒚 − 𝐖LLSE𝐱 2

= 𝐲 2 − 𝐖LLSE𝐱 2
𝒟

= Tr ෡𝐑𝐘 − ෡𝐑𝐘𝐗
෡𝐑𝐗

−1 ෡𝐑𝐗𝐘

෡𝐑𝐗 = 𝐱𝐱𝑇
𝒟

=
1

𝑁
෍

𝑛=1

𝑁

𝐱𝑛𝐱𝑛
𝑇

෡𝐑𝐗𝐘 = 𝐱𝐲𝑇
𝒟

=
1

𝑁
෍

𝑛=1

𝑁

𝐱𝑛𝐲𝑛
𝑇



PROOF FOR LLSE REGRESSION
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min
𝐖

𝐲 − 𝐖𝐱 2
𝒟

LSE 𝐆 = 𝐲 − 𝐆𝐱 2

= 𝐲 − 𝐆opt𝐱 + 𝐆opt − 𝐆 𝐱
2

= 𝐲 − 𝐆opt𝐱
2

+ Tr 𝐆opt − 𝐆 ෡𝐑𝐗 𝐆opt − 𝐆
𝑇

+ 2 Tr ෡𝐑𝐘𝐗 − 𝐆opt
෡𝐑𝐗 𝐆opt − 𝐆

T

Proof:

Wiener-Hopf equations (Orthogonality Principle)

if: then:𝐆opt
෡𝐑𝐗 = ෡𝐑𝐗𝐘

because of orthogonality principle 
(error and signal uncorrelated)

𝐲 − ො𝐲 2 = 𝐲 2 + ො𝐲 2

= Tr ෡𝐑𝐘 − ෡𝐑𝐘𝐗
෡𝐑𝐗

−1 ෡𝐑𝐗𝐘

vTw = Tr wvT

LSE 𝐆 = 𝔼 𝐲 − 𝐆opt𝒙
2

+ Tr 𝐆opt − 𝐆 ෡𝐑𝐗 𝐆opt − 𝐆
T

≥0 ∀𝐆, since ෡𝐑𝐗 is psd 



SOLUTION TO LINEAR AND AFFINE (LS) REGRESSION
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It makes intuitive sense:

For LMMSE estimate: if you did not know the second moments you 

would estimate these correlations from data

in addition to optimality in the Gaussian case, linear MMSE estimation is 

popular because it requires much less data to accurately estimate second 

moments than a complete statistical description (or higher moments)



LLSE REGRESSION: SCALAR FROM SCALAR

9

Linear regression problem:

Solution (special case):

Estimate 𝒚 from 𝒙

if sample means all 0:

min
𝑤

𝑦 − 𝑤𝑥 2  ⇔  min
𝑤

1

𝑁
෍

𝑛=1

𝑁

𝑦𝑛 − 𝑤𝑥𝑛
2

𝑤𝐿𝐿𝑆𝐸 =
Ƹ𝑟𝑦𝑥

Ƹ𝑟𝑥

ො𝑦 =
Ƹ𝑟𝑦𝑥

Ƹ𝑟𝑥
𝑥

Ƹ𝑟𝑥 = 𝑥2 =
1

𝑁
෍

𝑛=1

𝑁

𝑥𝑛
2

Ƹ𝑟𝑦𝑥 = 𝑦𝑥 =
1

𝑁
෍

𝑛=1

𝑁

𝑦𝑛𝑥𝑛

𝐿𝐿𝑆𝜀 = 𝑦 − 𝑤𝐿𝐿𝑆𝐸𝑥 2

= 𝑦2 − 𝑤𝐿𝐿𝑆𝐸𝑥 2

= Ƹ𝑟𝑦 − Ƹ𝑟𝑦𝑥
2 Ƹ𝑟𝑥

−1

= ො𝜎𝑦
2 1 − ො𝜌2



LLSE REGRESSION: SCALAR FROM SCALAR
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this “stacked” approach yields the same as 

the ∙ 𝐷 approach on the previous slides

ො𝑦 stacked in a vector

min
𝑤

𝑦 − 𝑤𝑥 2  ⇔  min
𝑤

1

𝑁
෍

𝑛=1

𝑁

𝑦𝑛 − 𝑤𝑥𝑛
2  ⇔  𝐲 − 𝑤𝐱 2

𝑦 =

𝑦1

𝑦2

⋮
𝑦𝑁

𝑥 =

𝑥1

𝑥2

⋮
𝑥𝑁

𝑤𝐿𝐿𝑆𝐸 =
𝐲𝑇𝐱

𝐱𝑇𝐱 𝑁 𝐿𝐿𝑆𝜀 = 𝐲 2 −
𝐲𝑇𝐱

𝐱𝑇𝐱

2

𝐱 2

= 𝐲 2 −
𝐲𝑇𝐱

2

𝐱 2

ො𝐲 =
𝐲𝑇𝐱

𝐱𝑇𝐱
𝐱

Estimate 𝒚 from 𝒙

Linear regression problem:

Solution (special case):



LLSE REGRESSION: SCALAR FROM VECTOR
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min
𝐰

𝑦 − 𝐰𝑇𝐱
2

 ⇔  min
𝐰

1

𝑁
෍

𝑛=1

𝑁

𝑦𝑛 − 𝐰𝑇𝐱𝑛
2

what about the “stacked” approach for this case??

“Normal Equations”

similar: just change 𝔼 ∙ to ∙ 𝐷 in LMMSE result

ො𝑦 = 𝐰𝑇𝐱

𝑤 = ෡𝐑𝐗
−1 ො𝐫𝐱𝑦

ො𝐫𝐱𝑦 = ෡𝐑𝐱𝐲 = 𝐱𝑦

𝐿𝐿𝑆𝜀 = Ƹ𝑟y − ො𝐫𝐱𝑦
𝑇 ෡𝐑𝐗

−1 ො𝐫𝐱𝑦

෡𝐑𝐱𝐰 = ො𝐫𝐱𝑦

෡𝐑𝐗𝐰 = ො𝐫𝐱𝑦

Estimate 𝒚 from 𝒙

Linear regression problem:



LLSE REGRESSION: SCALAR FROM VECTOR
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min
𝑤

𝑦 − 𝑤𝑇𝑥
2

 ⇔  min
𝑤

1

𝑁
෍

𝑛=1

𝑁

𝑦𝑛 − 𝑤𝑇𝑥
2

 ⇔  min
𝑤

𝑦 − 𝑋𝑤 2

this is the same as ∙ 𝐷 case, with all ො𝑦 stacked in a vector

normal equations

𝐗 =

𝐱1
𝑇

𝐱2
𝑇

⋮
𝐱𝑁

𝑇

𝐗𝑇 = 𝐱1 𝐱2 ⋯ 𝐱𝑁
ො𝐲 = 𝑿𝒘

𝐰 = 𝐗𝑇𝐗
−1

𝐗𝑇𝐲

ො𝐲 = 𝐗 𝐗𝑇𝐗
−1

𝐗𝑇𝐲

= 𝐏𝐗𝐲

𝑁 𝐿𝐿𝑆𝜀 = Tr 𝐲 2 − 𝐏𝐱𝐲 2

= Tr 𝐈 − 𝐏𝐱 𝐲 2

Estimate 𝒚 from 𝒙

Linear regression problem:

Solution (special case):

𝐗𝑇𝐗 = 𝐗𝑇𝐲

෡𝐑𝐗
−1 ො𝐫𝐱𝑦 =

1

𝑁
𝐗𝑇𝐗

−1
1

𝑁
𝐗𝑇𝐲



THE AFFINE TO LINEAR MATH “TRICK”

13

min
𝐰

𝑦 − 𝐰𝑇𝐱
2

 ⇔  min
𝐰

1

𝑁
෍

𝑛=1

𝑁

𝑦𝑛 − 𝐰𝑇𝐱𝑛
2

ො𝑦 = 𝐱𝑇 | 1
𝐰
𝑏

= 𝐱𝑇𝐰 + 𝑏

ො𝐲 = 𝐗 | 𝟏
𝐰
𝑏

= 𝐗𝐰 + 𝐛1

therefore: compact notation even if using bias (𝑏) term

𝐗 | 𝟏 =

𝐱1
𝑇 | 1

𝐱2
𝑇 | 1
⋮ | ⋮

𝐱𝑁
𝑇 | 1



LINEAR 

CLASSIFICATION
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LINEAR CLASSIFIER
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perform linear regression and then threshold to hard decision

Example: 

linear_classifier_examples.ipynb

standard LLSE regression with prediction thresholding

Review: 

𝑦 ∈ −1, +1

ො𝑦 = 𝑠𝑖𝑔𝑛 𝐰𝑇𝐱

𝑠𝑖𝑔𝑛 𝑣 = ቊ
+1, 𝑣 ≥ 0
−1, 𝑣 < 0

min
𝐰

1

𝑁
෍

𝑛=1

𝑁

𝑦𝑛 − 𝐰𝑇𝐱𝑛
2



EXAMPLE: LINEAR AND AFFINE REGRESSION 
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for the case with no bias term, the decision 

threshold must pass through the origin

adding the bias term allows for offset 

from the origin 

𝑠0 =
+1
+1

𝑠1 =
−2
−2

ො𝑦 = 𝐱𝑇 | 1
𝐰
𝑏

ො𝑦 = 𝐱𝑇𝐰



MAXIMUM LIKELIHOOD ESTIMATION EXAMPLE
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this is a model for the data 𝑥𝑛, 𝑦𝑛 :

(under this model for the data)

Maximum Likelihood <==> Minimize Neg-Log-Likelihood <==> LLSE regression

𝑦𝑛 = 𝐰𝑇𝐱𝑛 + 𝑣𝑛, 𝑛 = 1,2, … , 𝑁

𝐲 = 𝐗𝐰 + 𝐯 𝑡

𝑝𝑣 𝑡 𝐯 = 𝒩𝑁 𝐯; 𝟎, 𝜎𝑣
2𝐈

𝑝𝐲 𝑡 |𝐗(𝑡) 𝐲|𝐗; 𝐰 = 𝑝𝐯 𝑡 𝐲 − 𝐗𝐰 = 𝒩𝑁 𝐯; 𝐗𝐰, 𝜎𝑣
2𝐈

𝑁𝐿𝐿 𝐰 = − ln 𝑝𝐲 𝑡 𝐲|𝐗; 𝐰

= − ln
1

2𝜋𝜎𝑣
2

𝑁
2

exp −
1

2𝜎𝑣
2 𝐲 − 𝐗𝐰 2

= −
1

2𝜎𝑣
2 𝐲 − 𝐗𝐰 2 +

N

2
ln 2𝜋𝜎𝑣

2

max
𝐰

𝑝𝐲 𝑡 |𝐗(𝑡) 𝐲|𝐗; 𝐰 ⇔ min
𝐰

𝐲 − 𝐗𝐰 2



PROPERTIES OF ML ESTIMATORS

• Asymptotically Gaussian:

◦ For large amounts of data, the ML estimate is Gaussian with mean equal to the 

true parameter (models matched)

• Consistent:

◦ The limit in probability of the ML estimate is the true parameter (model 

matched)

• The ML estimate minimizes the KL Divergence between the model 

distribution and the empirical data distribution.  KL divergence measures 

the difference between two distribution (Info. Theory).

◦ Minimizing KL divergence in this case also corresponds to minimizing the cross 

entropy
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INFORMATION 

THEORY
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ML ESTIMATION AND INFORMATION THEORY
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Entropy:

Intuition:

Examples:

fair die:

loaded die:

events with low probability have large information —

e.g., “it will snow in Phoenix tomorrow”

the entropy is the average information learned when the 

value of 𝑋 𝑢 is revealed.  

weather report in Phoenix has low entropy (almost always the same), whereas 

in Sioux City, SD it has high entropy (highly variant weather)

𝐻 𝑋 𝑡 = 𝔼 log2

1

𝑝𝑋 𝑡 𝑋 𝑡

= ෍

𝑘

𝑝𝑋 𝑡 𝑘 log2

1

𝑝𝑋 𝑡 𝑘

= ෍

𝑘

𝑝𝑘 log2

1

𝑝𝑘

𝐻 𝑋(𝑡) = log2 1/6 = 2.58 𝑏𝑖𝑡𝑠/𝑟𝑜𝑙𝑙

𝐻 𝑋 𝑡 = −0.4 log2 0.4 − 0.1 log2 0.1 − 0.01 log2 0.01

− 0.09 log2 0.09 − 0.25 log2 0.25 − 0.15 log2 0.15

= 2.15 𝑏𝑖𝑡𝑠/𝑟𝑜𝑙𝑙



ML ESTIMATION AND INFORMATION THEORY
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Entropy of i.i.d. Bernoulli Source (with success probability 𝑝) 

𝐻 𝑝 = −𝑝 log2 𝑝 − 1 − 𝑝 log2 1 − 𝑝



ML ESTIMATION AND INFORMATION THEORY
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KL-Divergence

Cross-Entropy
𝐶𝐸 𝑝, ෤𝑝 = 𝔼𝑝 log

1

෤𝑝 𝑋 𝑡

𝐷 𝑝 ∥ ෤𝑝 = 𝔼𝑝 log
𝑝𝑥 𝑋 𝑡

෤𝑝𝑥 𝑋(𝑡)

= ෍

𝑘

𝑝𝑘 log
𝑝𝑘

෤𝑝𝑘

= ෍

𝑘

𝑝𝑘 log 𝑝𝑘 − ෍

𝑘

𝑝𝑘 log ෤𝑝𝑘

= 𝐶𝐸 𝑝, ෤𝑝 − 𝐻(𝑝)



ML ESTIMATION AND INFORMATION THEORY

max
Θ

𝑝𝑚𝑜𝑑𝑒𝑙 𝐲|𝐗; Θ  ⇔  min
𝜃

− log 𝑝𝑚𝑜𝑑𝑒𝑙(𝐲|𝐗; Θ)

⇔  min
𝜃

− ෍

𝑛=1

𝑁

log 𝑝𝑚𝑜𝑑𝑒𝑙 𝑦𝑛|𝐱𝑛; Θ

⇔  min
𝜃

−
1

𝑁
෍

𝑛=1

𝑁

log 𝑝𝑚𝑜𝑑𝑒𝑙 𝑦𝑛|𝐱𝑛; Θ

(assume i.i.d. 𝑦𝑛)

(empirical Cross-Entropy)

Max-Likelihood Estimation of 

neural network weights is 

always minimizing the 

empirical cross entropy 

between data distribution and 

the modeled distribution

ML parameter estimation minimizes empirical CE (and KL divergence)

𝐶𝐸 𝑝𝑑𝑎𝑡𝑎 , 𝑝𝑚𝑜𝑑𝑒𝑙(Θ) = 𝔼𝑝𝑑𝑎𝑡𝑎 𝑦|𝑥 log
1

𝑝𝑚𝑜𝑑𝑒𝑙 𝑦 𝑡 |𝐱 𝑡 ; Θ

≈ − log 𝑝𝑚𝑜𝑑𝑒𝑙 𝑦|𝐱; Θ
𝒟

= −
1

𝑁
෍

𝑛=1

𝑁

log 𝑝𝑚𝑜𝑑𝑒𝑙 𝑦𝑛|𝐱𝑛; Θ

𝑝𝑑𝑎𝑡𝑎 𝑦|𝐱 = data distribution of the data (typically unknown)

𝑝𝑚𝑜𝑑𝑒𝑙 𝑦|𝐱; Θ = modeled distribution of the data (function of parameters)



MULTI-CLASS CROSS ENTROPY EXAMPLE (“ONE HOT”)
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One hot encoding: cat: 0

dog: 1

bird: 2

Sample data labels: 𝑛 = 1: 𝑦 = 1 (dog)

𝑛 = 2: 𝑦 = 2 (bird)

𝑛 = 3: 𝑦 = 0 (cat)

Classifier Output: 𝑛 = 1: [ 𝟎. 𝟑 𝟎. 𝟓 𝟎. 𝟐 ]

𝑛 = 2: [ 𝟎. 𝟎 𝟎. 𝟎 𝟏. 𝟎 ]

𝑛 = 3: [ 𝟎. 𝟒 𝟎. 𝟓 𝟎. 𝟏 ]

[ 𝑝 𝑐𝑎𝑡 𝑝 ⅆ𝑜𝑔 𝑝(𝑏𝑖𝑟ⅆ) ]

𝐿𝑜𝑠𝑠 = −
1

3
log 0.5 + log 1.0 + log 0.4

𝑀𝐶𝐸 𝑝𝑑𝑎𝑡𝑎, 𝑝𝑚𝑜𝑑𝑒𝑙 𝑤 = −
1

𝑁
෍

𝑛=1

𝑁

෍

𝑚=1

𝑀

𝕀 𝑦𝑛 = 𝑚 log 𝑝𝑚𝑜𝑑𝑒𝑙 𝑦𝑛 = 𝑚; 𝑤
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