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DECISION/DETECTION THEORY

« Bayesian Decision Theory
- Bayes decision rule

o MAP rule - minimum error probability rule

« Maximum Likelihood

o Likelihood, Negative-Log-Likelihood, Likelihood ratios

« Neyman-Pearson test and the ROC

o Detection and False Alarm trade off
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DECISION THEORY FRAMEWORK (STATISTICAL)

Pa(w)|d(w)(2lm) = p(2z[Hm)
r(Ailz)
likelihood (of H,, given z(u) = z)

decision rule

hypothesis
(class)
space

decision
(action)
space

observation
space

p(Hm) = Pr{d(u) = m} = m, A; : take action 4, typically: “decide d = m

a priori probability

Goal: design a good decision rule using the statistical model

observation space

Q e Zm = decision region m = {z € Z : r(Ay|z) = 1}
3
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DECISION THEORY FRAMEWORK (STATISTICAL)

Cost for action m given
observation z

Bayes decision rule
(minimizes Bayes risk)

Bayes risk for decision rule r

Q¢m=§}mm@Qmﬂg
i
Cij = C(J—[l-,Aj) = Cost of action A; when H; true
1 m= argmjin C(Aj|z)

rBayes(Amlz) = {
0 else

dz

Risk(r) = sz(z) [Z r(4;|z) C(4;|z)
J

a posteriori factoring

equivalent for making decisions

p(z|Hy) T,
p(2)

p(}[mlz) =

= p(z|Hp) Ty,

normalizing p(z) is constant (over H,,),
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MAXIMUM A POSTERIORI PROBABILITY (MAP) RULE

MAP is special case of Bayesian Decision Rule

MAP rule

maxp(H,,|z) & maxp(z|Hy) T,
m m

Bayes rule
0 1 1 1
1 0 1 1
C=11 1 0 1
1 1 1 0

Bayes risk is the probability of decision
error (for these costs)

MAP rule minimizes probability of decision
error over finite number of hypotheses

C(4j)z) = Z Cijp(H;|2z)

= (- 8li- jDp0tI2)
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ASIDE: HARD AND SOFT DECISIONS

Consider MMSE Estimation of a digital/discrete random variable

Hard decision: d=3
Soft Decision A: p(d=0)=0.11 p(d=1)=0.39 p(d=2)=0.10 p(d=3)=0.40
Soft Decision B:  p(d=0)=0.01 p(d=1)=0.01 p(d=2)=0.01 p(d=3)=0.97

Decisions A and B are consistent with the same hard decision.

But B corresponds to much higher confidence

a posterior probabilities are often assumed ideal soft decisions

) feature soft transcript
audio samples vectors decisions | dictionary &
feature neural
EE—— f language
computation network
on model
phonemes
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BINARY MAP RULE

M=2
P(E) = P(E|Hy)my + P(E|H)my

= | f(z|Ho)medz + | f(2|H)m,dz

Zl ZO
Ho
fz|H)r, s f(z|Hy)mg
Hy
Ho
A(z) [(lHy) s To _ T Likelihood Ratio Test
f(z|Hy) Hy T

use p(z|H,,) / p(z|Hy) for M > 2
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OTHER RULES (SPECIAL CASES OF MAP)

Maximum Likelihood (ML): max f (z|H,)
Minimum Distance: min d(z, s,)
Min. Euclidean (squared) Distance: min||z — Smll?
M=2
4 70, )
Maximum Likelihood (ML): f(z|Hy) s f(z|H,)
Hy
MAP is ML when a priori H,
probabilities are uniform Minimum Distance: d(z,sy) s f(z,5,)
Hy
Ho
Min. Euclidean (squared) Distance: |z —soll? S ||z — 541

\_ Us _J




USCViterbi

School of Engineering

OTHER DECISION CRITERION (NON-BAYES)

minimax rule: the Bayes full for the worst case a priori probabilities

P, = P(decide H,|H;) Detection Probability

Pr4 = P(decide H;|H,) False Alarm Probability

Can always maximize detection probability by always deciding H; ,but
this will have high false alarm probability.
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LOGISTIC REGRESSION MOTIVATION

Note that a linear classifier has hard decision:

9 = sign(w'x) ye{-1,+1}

with corresponding soft decision:

w

<
Il

magnitude is the

“confidence,” hard decision is the sign

How can we convert this to a soft decision that is a probability?

11
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LOGISTIC REGRESSION

o wo

1 wq

3

Two problems to address:

1. What is a good “sigma” function to map from reals targeting +/- 1 to a probability
of a 1?

2. What is a good loss function between the binary labels {0,1} and the regressor
output p ~ P(1)?

12
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RECALL: ML INTERPRETATION OF LLSE REGRESSION

model for ML estimation of w:

y =wlx+ v(t) p(v) = N(v;0,02)

if we adopt the convention that:
y=+1 & ¥y

1

0

y=-1 & y

Likelihood ratio for y (binary classification):

p(y = +1lx,w)  N(+1,w'x,07)
p(y = —-1lx,w)  N(-1;wTx,02)

w dot x can be seen as the log-

likelihood ratio, i.e., log ratio

2
T
= exp [—zw x]
017
of probabilities (unnormalized)

Log-likelihood ratio:
X
13
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MOTIVATING LOGISTIC REGRESSION

First, suppose we have the log ratio of two probability-like values (maybe not normalized)

=t — 4o
logistic function maps:
%0 o1 log-likelihood ratio to
Po= o 1 ota P = ok probability, P[Y = +1]
1 1
Cltett 14elL
L 1

P1 Po = o(L) 1+el 14e7L

0 is the “logistic” or “sigmoid” function --- note: sigmoid is overloaded 14




USCViterbi

School of Engineering

MOTIVATING LOGISTIC REGRESSION

maps log-likelihood ratio to a probability -- p; or prumerator

1.0 4

0.8 1

o
(=3}
1

sigmoid(x)
o
=

0.2

0.0 A

Note: o(0) = 0.5, i.e., P(4) = 0.5 = P(A°)

15
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LOGISTIC FUNCTION USEFUL PROPERTIES

o(s)

= a(s)(l - a(s))

o(s) = % [1 + tanh (%)]

16
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LOGISTIC REGRESSION MOTIVATION

Consider a new binary random variable y:

y(u) ~ Bernoulli(p)

And try a “linear” model:

1
1+ exp(—wTx)

p=p1= a(wa) =

1
1+ exp(+wTx)

So, model the binary target:

¥, ~ Bernoulli (a(wa))

unknown success probability

17
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LOGISTIC REGRESSION

ML approach to find w for this model:

N
p(y|X;w) = 1_[ pIr[1 — p, ]
n=1

N
I[yp= —
:Hpn[y 11— p,] a1

n=1

Inrq _ (1-Fn) — Pn Jn=1 (n=+1)
Pr 1= Pul {1 —Pn In=0 (Qp=-1)

The negative log-likelihood is....

Labels, y:1 0 1
Output o(w'x): 0.9 0.1 0.2

p(y|lx;w): 0.9 - 0.9:-0.2

pn = a(wlx,)

18
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LOGISTIC REGRESSION

The negative log-likelihood is:

NLL(w) pn = a(wlx,)

N
= Z log(1 + exp[—y,wx])

n=1

Binary cross-entropy loss, acts

as a "distance"” between two pdfs

Labels, y:1 0 1

Output o(w'x): 0.9 0.1 0.2

NLL(w): 0.11+0.11+ 1.6
19
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LOGISTIC REGRESSION

To
y €{-1,+1} y €{0,1}

T wq

s
=

Two problems addressed:
1. Logistic function maps LLR to p;

2. Binary cross-entropy is a natural loss - ML parameter estimation for Bernoulli model (coin-flip)

20
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LOGISTIC REGRESSION

Summary:

Logistical regression is ML estimation of w for an i.i.d. Bernoulli model with
pp = o(wl'x)

which can be viewed as regression with the (empirical) binary cross-entropy

cost function

no closed form, usually use SGD to perform the regression

We will see that this is a special case of two concepts:
1. It is a single-perceptron and MLP (neural networks) are many of these
combined (with slight modification).

2. The loss function derived is the binary cross-entropy between the output
probability mass function (p, 1 — p) and the “one-hot” encoded label pmf .

21
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SINGLE PERCEPTRON HISTORY

1010

-
<= Frog

_—
-~

<—| Sponge
g~ (Sponee)

Figure 1.11: Increasing neural network size over time. Since the introduction of hidden
units, artificial neural networks have doubled in size roughly every 2.4 years. Biological

Number of neurons (logarithmic scale)
—
)
o

|
1950 1985 2000 2015 20

neural network sizes from (2015).
1. Perceptron ( s ) )
2. Adaptive linear element ( N
3. Neocognitron ( N ) . . .
4. Early back-propagation network ( , 1956b) this model was proposed with a simple
5. Recurrent neural network for speech recognition ) . . >
6. Multilayer perceptron for speech recognition ( ( 3 ) : learn] ng algor]thm (SpeC1al Case Of SG D)
7. Mean field sigmoid belief network ( s )
8. LeNet-5 ( B )
9. Echo state network ( , )
10. Deep belief network ( , )
11. GPU-accelerated convolutional network ( N )
12. Deep Boltzmann machine ( N )
13. GPU-accelerated deep belief network ( N )
14. Unsupervised convolutional network ( y )
15. GPU-accelerated multilayer perceptron ( s )
16. OMP-1 network ( , )
17. Distributed autoencoder ( s )
18. Multi-GPU convolutional network ( s )
19. COTS HPC unsupervised convolutional network ( s )
20. GoogLeNet ( B ) 22
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ESTIMATION, REGRESSION, CLASSIFICATION

statistical models data driven

MMSE Estimation general regression

Linear/Affine MMSE Est. linear LS regression

FIR Wiener filtering §tqcl?a§tic gradient and

—— GD, SGD, LMS >
Classification from data neural networks

Bayesian decision theory

- linear classifier for regression and
Hard decisions o v
classification

soft decisions (APP) logistical regression

(perceptron) learning with SGD
ML/MAP parameter e
o regularization
estimation
Karhunen-Loeve expansion PCA
sufficient statistics feature design

working with data
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REGULARIZATION

What is regularization and why do it?

Often: enforce penalty on weights to bias toward a prior distribution.

e.g., prefer smaller weights

effect is to reduce over-fitting

Not all regularization methods can be viewed this way

e.q., intuitive, empirical penalty enforcing functions are used

What is a more general definition of regularization?

25
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REGULARIZATION

What is regularization and why do it?

Often: enforce penalty on weights to bias toward a prior distribution.

e.g., prefer smaller weights

effect is to reduce over-fitting

Not all regularization methods can be viewed this way

e.q., intuitive, empirical penalty enforcing functions are used

What is a more general definition of regularization?

regularization is anything you do in training that to improve generalization over
accuracy — i.e., anything that does not optimize the cost on the training data

we will see variations of this — e.g., drop-out
26
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REGULARIZATION INTERPRETATION

meaxpy(tﬂx(t),(é)(t)(ylx» 0o xp(Olx) < mvjnlly — Xwl|* + A||w]|?

The a-priori Gaussian distribution on the weights leads to “L2 regularization”

penalizes large w — even if large w cause smaller squared error

this can be viewed a method to combat over-fitting

A is called the regularization coefficient in this context

Larger 1 — penalize larger weights more aggressively (at expense of SE)

27
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REGULARIZATION INTERPRETATION

min|ly — Xw||* + 2llwll,

il = > Iwi
i

Questions:

- does this correspond to an a-priori distribution on the weights? Which one?

- Qualitatively, what is the difference between L1 and L2 regularization?

28
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REGRESSION FROM DATA

1 M=0 1r
/\\
t t
under-fitting °© o 0

desired behavior o} over-fitting

0 x 1 0 T !

Figure 1.4 Plots of polynomials having various orders M, shown as red curves, fitted to the data set shown in
Figure 1.2.

Choosing the right model (complexity) is challenging given a finite

data set and no good model for what generated it!!! -
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OVER-FITTING

——— training
MSE val

epochs

desired behavior

MSE

——— training
val

—_

~_

typical over-fitting

epochs

30
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MAIN IDEAS FROM BACKGROUND

« Random vectors

o Eigenvalues of covariance matrix provides information regarding direction

preferences (principal components)

o May drop directions with very little energy/power

« Estimation
o MMSE estimator is conditional expectation — difficult to find
o Linear/Affine MMSE is simple and only depends on second moments

o For jointly-Gaussian observed/desired, affine is optimal

« Detection
o MAP rule is minimum error probability.

o Requires complete statistical description

32
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MAIN IDEAS FROM BACKGROUND

» Regression (from data)

o Linear regression is same as affine/linear MMSE estimation, but with data averaging

replacing ensemble averaging
o Stacking interpretation
o ML parameter interpretation

o MAP parameter interpretation for regularization

« Classification (form data)
o Linear classifier: linear regression with +/- 1 target and “slicer”

o Logistic regression

* Information Theory:
o ML parameter estimation ==> Empirical Cross-entropy loss function

o Only called CE for classification tasks

33
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MULTILAYER PERCEPTRON NETWORKS (MLPS)

Forward propagation (inference and training)

—

a® = E(Wzal_l + bz) @ ={W,b}, (trainable parameters)
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Backward propagation (training)

Learn the trainable parameters using SGD and the chain-rule 35
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MLP FORWARD PROPAGATION DETAILS

ag—l)

ag—l)
ag—n

ag—l)

-1
ay s

-1
a&—f

look familiar?

36
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