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DECISION/DETECTION THEORY

• Bayesian Decision Theory

◦ Bayes decision rule

◦ MAP rule - minimum error probability rule

• Maximum Likelihood

◦ Likelihood, Negative-Log-Likelihood, Likelihood ratios

• Neyman-Pearson test and the ROC

◦ Detection and False Alarm trade off
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DECISION THEORY FRAMEWORK (STATISTICAL)
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Goal: design a good decision rule using the statistical model

typically try to implement the decision rule 

as a partitioning of the sample space



DECISION THEORY FRAMEWORK (STATISTICAL)
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Bayes risk for decision rule 𝑟

Cost for action 𝑚 given 

observation 𝒛

Bayes decision rule

(minimizes Bayes risk)

a posteriori factoring

equivalent for making decisions –- normalizing 𝑝(𝒛) is constant (over 𝐻𝑚), i.e., does not depend on 𝐻𝑚

𝑅𝑖𝑠𝑘 𝑟 = න
𝒵

𝑝 𝒛  ෍

𝑗

 𝑟 𝐴𝑗|𝒛  𝐶 𝐴𝑗|𝒛  𝑑𝒛

𝐶 𝐴𝑗|𝒛 = ෍

𝑖

𝑝 ℋ𝑖|𝒛  𝐶 ℋ𝑖 , 𝐴𝑗

𝐶𝑖𝑗 = 𝐶 ℋ𝑖 , 𝐴𝑗 = Cost of action 𝐴𝑗  when ℋ𝑖  true

𝑟𝐵𝑎𝑦𝑒𝑠 𝐴𝑚|𝒛 = ൝
1 𝑚 = arg min

𝑗
𝐶 𝐴𝑗|𝒛

0 𝑒𝑙𝑠𝑒 

𝑝 ℋ𝑚|𝒛 =
𝑝 𝒛|ℋ𝑚  𝜋𝑚

𝑝 𝒛

≅ 𝑝 𝒛|ℋ𝑚  𝜋𝑚

a posteriori probability (APP)



MAP is special case of Bayesian Decision Rule

MAXIMUM A POSTERIORI PROBABILITY (MAP) RULE

5

Bayes risk is the probability of decision 

error (for these costs)

𝐶 =

0 1 1 … 1
1 0 1 … 1
1 1 0 … 1
⋮ ⋮ ⋮ ⋱ ⋮
1 1 1 … 0

MAP rule

MAP rule minimizes probability of decision 

error over finite number of hypotheses
max

𝑚
𝑝 ℋ𝑚|𝒛  ⇔  max

𝑚
𝑝 𝒛|ℋ𝑀  𝜋𝑚

Bayes rule
𝐶 𝐴𝑗|𝒛 = ෍

𝑖

𝐶𝑖𝑗𝑝 ℋ𝑖|𝒛

= ෍

𝑖

1 − 𝛿 𝑖 − 𝑗 𝑝 ℋ𝑖|𝒛

= ෍

𝑖≠𝑗

𝑝 ℋ𝑖|𝒛

= 1 − 𝑝 ℋ𝑗|𝒛



ASIDE: HARD AND SOFT DECISIONS
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Consider MMSE Estimation of a digital/discrete random variable

Decisions A and B are consistent with the same hard decision.

But B corresponds to much higher confidence

Hard decision: 

Soft Decision A:

Soft Decision B:

a posterior probabilities are often assumed ideal soft decisions

Soft decisions useful when the output of the classifier feeds additional 

processing — e.g., Automatic Speech Recognition (ASR):

መ𝑑 = 3

𝑝 ሚ𝑑 = 0 = 0.11 𝒑 ෩𝒅 = 𝟏 = 𝟎. 𝟑𝟗 𝑝 ሚ𝑑 = 2 = 0.10 𝒑 ෩𝒅 = 𝟑 = 𝟎. 𝟒𝟎

𝑝 ሚ𝑑 = 0 = 0.01 𝑝 ሚ𝑑 = 1 = 0.01 𝑝 ሚ𝑑 = 2 = 0.01 𝒑 ෩𝒅 = 𝟑 = 𝟎. 𝟗𝟕



BINARY MAP RULE
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Likelihood Ratio Test

𝑴 = 𝟐

likelihood ratio

use 𝑝(𝒛|𝐻𝑚) / 𝑝(𝒛|𝐻0) for 𝑀 > 2

𝑃 ℰ = 𝑃 ℰ|ℋ0 𝜋0 + 𝑃 ℰ|ℋ1 𝜋1

= න
𝒵1

𝑓 𝒛|ℋ0 𝜋0𝑑𝒛 + න
𝒵0

𝑓 𝒛|ℋ1 𝜋1𝑑𝒛

𝑓 𝒛|ℋ1 𝜋1

ℋ0

≶
ℋ1

𝑓 𝒛|ℋ0 𝜋0

Λ 𝒛 =
𝑓 𝒛|ℋ1

𝑓 𝒛|ℋ0

ℋ0

≶
ℋ1

𝜋0

𝜋1
= 𝑇

𝑖. 𝑒. , 2 hypotheses
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OTHER RULES (SPECIAL CASES OF MAP)

MAP is ML when a priori

probabilities are uniform

𝑴 = 𝟐

Maximum Likelihood (ML):

Minimum Distance:

Min. Euclidean (squared) Distance:

max
𝑚

𝑓 𝒛|ℋ𝑚

min
𝑚

𝑑 𝒛, 𝒔𝑚

min
𝑚

𝒛 − 𝒔𝑚
2

Maximum Likelihood (ML):

Minimum Distance:

Min. Euclidean (squared) Distance:

𝑓 𝒛|ℋ1

ℋ0

≶
ℋ1

𝑓 𝒛|ℋ0

𝑑 𝒛, 𝒔0

ℋ0

≶
ℋ1

𝑓 𝒛, 𝒔1

𝒛 − 𝒔0
2

ℋ0

≶
ℋ1

𝒛 − 𝒔1
2



OTHER DECISION CRITERION (NON-BAYES)
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minimax rule: the Bayes full for the worst case a priori probabilities 

Neyman-Pearson rule:

maximize detection probability for a given false alarm probability

NP rule example:

Given 𝑃𝑓𝑎 < 0.1 ,maximize 𝑃𝑑

Can always maximize detection probability by always deciding 𝐻1 ,but 

this will have high false alarm probability.  

Note: NP and minimax rules do not need knowledge of priors

𝑃𝐷 = 𝑃 𝑑𝑒𝑐𝑖𝑑𝑒 ℋ1|ℋ1

𝑃𝐹𝐴 = 𝑃 𝑑𝑒𝑐𝑖𝑑𝑒 ℋ1|ℋ0

Detection Probability

False Alarm Probability



LOGISTIC 

REGRESSION
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LOGISTIC REGRESSION MOTIVATION
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Note that a linear classifier has hard decision:

Note that this is a real number — the magnitude is the 

“confidence,” the hard decision is the sign

How can we convert this to a soft decision that is a probability?

with corresponding soft decision:

ො𝑦 = sign 𝒘𝑇𝒙 ො𝑦 ∈ −1, +1

ො𝑦 = 𝒘𝑇𝒙



LOGISTIC REGRESSION
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Two problems to address:

1. What is a good “sigma” function to map from reals targeting +/- 1 to a probability 

of a 1?

2. What is a good loss function between the binary labels 0,1  and the regressor 

output Ƹ𝑝 ~ 𝑃(1)?

labels

𝑦 ∈ −1, +1 ෤𝑦 ∈ 0,1



RECALL: ML INTERPRETATION OF LLSE REGRESSION
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model for ML estimation of 𝒘:

if we adopt the convention that:

Likelihood ratio for 𝑦 (binary classification):

Log-likelihood ratio:

𝒘 dot 𝒙 can be seen as the log-

likelihood ratio, i.e., log ratio 

of probabilities (unnormalized)

𝑦 = 𝒘𝑇𝐱 + 𝑣 𝑡 𝑝 𝑣 = 𝒩 𝑣; 0, 𝜎𝑣
2

𝑦 = +1 ⇔  ෤𝑦 = 1

𝑦 = −1 ⇔  ෤𝑦 = 0

𝑝 𝑦 = +1|𝒙, 𝒘

𝑝 𝑦 = −1|𝒙, 𝒘
=

𝒩 +1; 𝒘𝑇𝒙, 𝜎𝑣
2

𝒩 −1; 𝒘𝑇𝒙, 𝜎𝑣
2

= exp
2

𝜎𝑣
2 𝒘𝑇𝒙

𝐿 =
2

𝜎𝑣
2 𝒘𝑇𝒙



MOTIVATING LOGISTIC REGRESSION
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First, suppose we have the log ratio of two probability-like values (maybe not normalized)

𝝈 is the “logistic” or “sigmoid” function --- note: sigmoid is overloaded

logistic function maps:

log-likelihood ratio to 

probability, 𝑃[𝑌 = +1]

𝑳 = 𝐥𝐧
𝒑𝟏

𝒑𝟎
= 𝐥𝐧 𝒑𝟏 − 𝐥𝐧 𝒑𝟎

 = ℓ1 − ℓ0

𝑝0 =
𝑒ℓ0

𝑒ℓ0 + 𝑒ℓ1

=
1

1 + 𝑒+𝐿

𝑝1 =
𝑒ℓ1

𝑒ℓ0 + 𝑒ℓ1

=
1

1 + 𝑒−𝐿

𝑝1 = 1 − 𝑝0 = 𝜎 𝐿 =
𝑒𝐿

1 + 𝑒𝐿
=

1

1 + 𝑒−𝐿

𝑒ln 𝑎 = 𝑎



MOTIVATING LOGISTIC REGRESSION
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maps log-likelihood ratio to a probability -- 𝑝1 or 𝑝𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟

Note: 𝜎 0 = 0.5, i.e., 𝑃 𝐴 = 0.5 = 𝑃 𝐴𝐶



LOGISTIC FUNCTION USEFUL PROPERTIES
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ሶ𝝈 𝒔 =
𝑑

𝑑𝑠

𝑒𝑠

1 + 𝑒𝑠

=
𝑒𝑠

1 + 𝑒𝑠 −
𝑒𝑠 2

1 + 𝑒𝑠 2

=
𝑒𝑠

1 + 𝑒𝑠

1

1 + 𝑒𝑠

= 𝝈 𝒔 𝟏 − 𝝈 𝒔

𝜎 𝑠 =
1

2
1 + tanh

𝑠

2



LOGISTIC REGRESSION MOTIVATION
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Consider a new binary random variable ෤𝑦:

So, model the binary target:

෤𝑦 𝑢  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑝

𝑝 = 𝑝1 = 𝜎 𝒘𝑇𝒙 =
1

1 + exp(−𝒘𝑇𝒙)

1 − 𝑝 = 𝑝0 =
1

1 + exp(+𝒘𝑇𝒙)

෥𝒚𝒏 ∼ 𝑩𝒆𝒓𝒏𝒐𝒖𝒍𝒍𝒊 𝝈 𝒘𝑻𝒙 i.i.d.

And try a “linear” model: unknown success probability



LOGISTIC REGRESSION
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ML approach to find 𝒘 for this model:

The negative log-likelihood is….

Labels, ෥𝒚: 1 0 1

Output 𝝈 𝒘𝑻𝒙 : 0.9 0.1 0.2

𝒑 𝒚|𝒙; 𝒘 : 𝟎. 𝟗 ∙  𝟎. 𝟗 ∙ 𝟎. 𝟐

𝒑 𝒚|𝑿; 𝒘 = ෑ

𝒏=𝟏

𝑵

𝒑𝒏
෥𝒚𝒏 𝟏 − 𝒑𝒏

𝟏−෥𝒚𝒏

= ෑ

𝑛=1

𝑁

𝑝𝑛
𝕀 𝑦𝑛=+1

1 − 𝑝𝑛
𝕀 𝑦𝑛=−1

𝑝𝑛 = 𝜎 𝒘𝑇𝒙𝑛

𝑝𝑛
෤𝑦𝑛 1 − 𝑝𝑛

1− ෤𝑦𝑛 = ቊ
𝑝𝑛 ෤𝑦𝑛 = 1 (𝑦𝑛 = +1)

1 − 𝑝𝑛 ෤𝑦𝑛 = 0 𝑦𝑛 = −1

Example:



LOGISTIC REGRESSION

19

The negative log-likelihood is:

Binary cross-entropy loss, acts 

as a "distance" between two pdfs

𝑝𝑛 = 𝜎 𝒘𝑇𝒙𝑛𝑁𝐿𝐿 𝒘 = − ෍

𝑛=1

𝑁

෤𝑦𝑛 log 𝑝𝑛 + 1 − ෤𝑦𝑛 log 1 − 𝑝𝑛

= − ෍

𝑛=1

𝑁

෤𝑦𝑛 log 𝜎 𝒘𝑇𝒙 + 1 − ෤𝑦𝑛 log 1 − 𝜎 𝒘𝑇𝒙

= ෍

𝑛=1

𝑁

log 1 + exp −𝑦𝑛𝒘𝑇𝒙

Example:

Labels, ෥𝒚: 1 0 1

Output 𝝈 𝒘𝑻𝒙 : 0.9 0.1 0.2

𝑵𝑳𝑳 𝒘 : 𝟎. 𝟏𝟏 + 𝟎. 𝟏𝟏 + 𝟏. 𝟔



LOGISTIC REGRESSION
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Two problems addressed:

1. Logistic function maps 𝐿𝐿𝑅 to 𝑝1

2. Binary cross-entropy is a natural loss – ML parameter estimation for Bernoulli model (coin-flip)

labels

𝑦 ∈ −1, +1 ෤𝑦 ∈ 0,1



LOGISTIC REGRESSION
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Summary:

Logistical regression is ML estimation of 𝒘 for an i.i.d. Bernoulli model with

which can be viewed as regression with the (empirical) binary cross-entropy 

cost function

no closed form, usually use SGD to perform the regression

We will see that this is a special case of two concepts:

1. It is a single-perceptron and MLP (neural networks) are many of these 

combined (with slight modification).

2. The loss function derived is the binary cross-entropy between the output 

probability mass function 𝑝, 1 − 𝑝 and the “one-hot” encoded label pmf ෤𝑦.

𝑝𝑛 = 𝜎 𝒘𝑇𝒙



SINGLE PERCEPTRON HISTORY

22

this model was proposed with a simple 

learning algorithm (special case of SGD)



REGULARIZATION
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ESTIMATION, REGRESSION, CLASSIFICATION

MMSE Estimation

Linear/Affine MMSE Est.

FIR Wiener filtering

general regression

linear LS regression

stochastic gradient and 

batches

Bayesian decision theory

Hard decisions

soft decisions (APP)

Classification from data

linear classifier

logistical regression 

(perceptron)

ML/MAP parameter 

estimation
regularization

Karhunen-Loeve expansion

sufficient statistics

PCA

feature design

working with data

neural networks

for regression and 

classification

learning with SGD

GD, SGD, LMS

statistical models data driven 



REGULARIZATION
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What is regularization and why do it?

Often: enforce penalty on weights to bias toward a prior distribution.  

Not all regularization methods can be viewed this way

effect is to reduce over-fitting

e.g., intuitive, empirical penalty enforcing functions are used

What is a more general definition of regularization?

e.g., prefer smaller weights



REGULARIZATION
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What is regularization and why do it?

Often: enforce penalty on weights to bias toward a prior distribution.  

Not all regularization methods can be viewed this way

effect is to reduce over-fitting

e.g., intuitive, empirical penalty enforcing functions are used

What is a more general definition of regularization?

e.g., prefer smaller weights

regularization is anything you do in training that to improve generalization over 

accuracy — i.e., anything that does not optimize the cost on the training data

we will see variations of this — e.g., drop-out



REGULARIZATION INTERPRETATION
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The a-priori Gaussian distribution on the weights leads to “L2 regularization”

penalizes large 𝒘 — even if large 𝒘 cause smaller squared error

this can be viewed a method to combat over-fitting

𝜆 is called the regularization coefficient in this context 

Larger 𝜆 → penalize larger weights more aggressively (at expense of SE)

𝐦𝐚𝐱
𝜽

𝒑𝒚 𝒕 |𝒙 𝒕 ,𝚯 𝒕 𝒚|𝒙, 𝜽 𝒑𝚯 𝒕 |𝒙 𝒕 𝜽|𝒙  ⇔  𝐦𝐢𝐧
𝒘

𝒚 − 𝑿𝒘 𝟐 + 𝝀 𝒘 𝟐



REGULARIZATION INTERPRETATION
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Another popular type of regularizer is “L1 regularizer”

for example, for squared-error cost function with L1 regularization:

Questions: 

- does this correspond to an a-priori distribution on the weights?  Which one?

- Qualitatively, what is the difference between L1 and L2 regularization?

min
𝒘

𝒚 − 𝑿𝒘 2 + 𝜆 𝒘 1

𝒘 1 = ෍

𝑖

𝑤𝑖



REGRESSION FROM DATA
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under-fitting

over-fitting

Choosing the right model (complexity) is challenging given a finite 

data set and no good model for what generated it!!!

desired behavior



OVER-FITTING

30

typical over-fittingdesired behavior 

Better performance on training and worse or non-improving 

on validation (for 𝑃 correct  classification, it gets higher)



BACKGROUND 

SUMMARY

31



MAIN IDEAS FROM BACKGROUND

• Random vectors

◦ Eigenvalues of covariance matrix provides information regarding direction 

preferences (principal components)

◦ May drop directions with very little energy/power

• Estimation

◦ MMSE estimator is conditional expectation — difficult to find

◦ Linear/Affine MMSE is simple and only depends on second moments

◦ For jointly-Gaussian observed/desired, affine is optimal

• Detection

◦ MAP rule is minimum error probability. 

◦ Requires complete statistical description 32



MAIN IDEAS FROM BACKGROUND

• Regression (from data)

◦ Linear regression is same as affine/linear MMSE estimation, but with data averaging 

replacing ensemble averaging

◦ Stacking interpretation

◦ ML parameter interpretation 

◦ MAP parameter interpretation for regularization

• Classification (form data)

◦ Linear classifier: linear regression with +/- 1 target and “slicer”

◦ Logistic regression

• Information Theory:

◦ ML parameter estimation ==> Empirical Cross-entropy loss function

◦ Only called CE for classification tasks
33



MULTILAYER 

PERCEPTRONS 

(MLP)

34



MULTILAYER PERCEPTRON NETWORKS (MLPS)

35

Forward propagation (inference and training)

Backward propagation (training)

Learn the trainable parameters using SGD and the chain-rule

(trainable parameters)

𝒙 ෝ𝒚

𝒂(𝑙) = ℎ 𝑾𝑙𝒂𝑙−1 + 𝒃𝑙 Θ = 𝑾𝑙 , 𝒃𝑙 𝑙=1
𝐿



MLP FORWARD PROPAGATION DETAILS

36

processing at the 𝑖th neuron (node) at layer 𝑙

look familiar?
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