
Spring 2025

TRAINING DEEP
NEURAL NETWORKS I

DR. BRANDON FRANZKE

EE 541 – UNIT 6A

TOPIC OUTLINE

• Universal Approximation Theorem

◦ Why Deep?

• A Gentle Introduction to PyTorch

• Vanishing gradient and activations

• Weight initialization

• Cost functions, regularization, dropout

• Optimizers

• Batch Normalization

• Hyperparameter optimization
2

UNIVERSAL

APPROXIMATION

THEOREM

UNIVERSAL APPROXIMATION THEOREM

4

A single hidden layer MLP with squashing activation in the hidden layer and

linear output layer can approximate any “engineering function”

UNIVERSAL APPROXIMATION THEOREM

How does the intuition behind this work?

http://neuralnetworksanddeeplearning.com/chap4.html

can create a

“bump” function

done by choosing large

weights in layer 1
Combine bump functions

to get a Riemann-like

approximation with many

nodes in hidden layer
s = -b/w (step

position)

5

UNIVERSAL APPROXIMATION THEOREM

6

What happens when we train a neural net on like this?

http://neuralnetworksanddeeplearning.com/chap4.html

UNIVERSAL APPROXIMATION THEOREM

7no dropout dropout (we will see later)

3 hidden layers, 64 nodes each, ReLU activations

What happens when we train a neural net on Neilson’s example?

UNIVERSAL APPROXIMATION THEOREM

8

why go deep?

multiple layers can learn stages of classification or “case switches”

e.g.,

many problems suitable to neural nets have these properties -- e.g.,

“clamps/conditionals” --- multiple layers can model this more explicitly

1) single hidden layer may need to be huge

2) not clear that SGD-BP can learn this good approximation

3) There are inherent advantages to more hidden layers

Layer 1: detect if case A or case B holds

Layer 2: if case A, do algorithm A, else, do algorithm B

EXAMPLE FROM CLASS PROJECT

9

20 hidden nodes, shows whether relay is ON/OFF for each element in the dataset

Conditional Linear Regression: An alternative structure to Deep neural network with ReLU activation Qianmu Yu, Runmian Chang, Mo Shi

Intuition: ReLU-based MLP is toggling switches based on classification.

Then applying a linear mapping (these are like the clamps/conditionals)

UNIVERSAL APPROXIMATION THEOREM

10

Deeper models tend to perform better

why go deep?

UNIVERSAL APPROXIMATION THEOREM

11

deeper models

tend to

perform better

why go deep?

PYTORCH

GENTLE INTRODUCTION TO PYTORCH

13

Use PyTorch 2.4 or 2.5

You can install PyTorch through anaconda

best to set up virtual-environment with conda

(or use pyenv to create and manage minimal virtualenvs)

I use: conda, PyTorch 2.4 (upg: 2.5), MacOS 15, Python 3.11

TorchVision 0.15, TensorBoard 2.17 (on PC: CUDA via conda)

CONDA ENVIRONMENT

14

conda create --name ee541_work python=3.11

conda activate ee541_work

mac (mps)

#conda install pytorch::pytorch torchvision torchaudio -c pytorch

pc (with cuda), check cuda version e.g. > 11.7 / 11.8

#conda install pytorch torchvision torchaudio pytorch-cuda -c pytorch -c

nvidia

conda install numpy scipy opencv matplotlib

conda install h5py jupyter tensorboard seaborn tqdm pandas

conda install -c conda-forge torchinfo

extra

pip install torchviz

INTRODUCTION TO PYTORCH

15

Let’s code our first neural network!

typical imports

PyTorch has standard datasets

built-in – auto-download

loaders feed data to your model

define a sequential network

specify loss function and optimizer

and training loop… details shortly

INTRODUCTION TO PYTORCH

16

Same implementation but use the “Functional API” to define the model

define a torch.nn network (modular)

PYTORCH — DEFINING THE MODEL

Sequential

simple, quick

not very flexible

only allows for models that are a

sequence of layers (line-graph)

layer 1

layer 2

layer N

Use the nn.Module object for most models.

17

(next slide)

PYTORCH — DEFINING THE MODEL

18

Modular -- torch.nn.Module

little more setup (net + forward)

much more powerful:

• Models with shared layers

• Multi-input, multi-output models

• Directed acyclic graphs (DAGs)

• Custom layer

• Custom function on intermediate layer’s output

concatenate

PYTORCH— VIEWING MODEL STRUCTURE

19

leaves something to be desired, so…

even better: TensorBoard – GUI + inspection + Evaluation

TENSORBOARD — INSPECT INTERNAL MODEL STRUCTURE

20

PYTORCH — TRAINING LOOP (NO VALIDATION)

21

PYTORCH — MONITORING PERFORMANCE (TRAINING)

22

Gather loss and accuracy. Plot later.

then use standard plotting tools

Capture at desired interval

(per batch here)

PYTORCH — CHECK PERFORMANCE

23

over-fitting (bad!)

results of our training run…

PYTORCH — CHECK PERFORMANCE

24

the first test image is an Ankle Boot (class 9)

let’s try running inference on an image…

PYTORCH — CHECK PERFORMANCE

25

Pass many images to model() and the output

represents batch predictions

manual inference on a single image

PYTORCH — TEST SET PERFORMANCE

26

Loss:

Accuracy:

After 4 epochs

(2400 iterations)

0.2738

86.65%

DEALING WITH

DATA
TRAIN VS. TEST

TRAINING (+ VAL)/TEST SPLIT

28

(training-)training: use this for SGD learning — trainable parameters

(training-)validation: use this for SGD learning — hyper-parameters

test: only use this when you are done to verify

learning rate, batch size, etc.

weights, biases

TRAINING (+VAL)/TEST SPLIT

29

Typical Train/Validation/Test split:

70/15/15

val and test splits must be large enough to

capture natural variation in the data

val and test splits must be large enough to allow

reliable classification error estimates

So: want lots of data

TRAINING (+ VAL)/TEST SPLIT

30
good practice to shuffle all of the data once before the train/val/test split

shuffle all data in training (not including validation) after each epoch

perm = np.random.permutation(N_train)

x_train = x_train[perm]

y_train = y_train[perm]

TRAINING (+ VAL)/TEST SPLIT

31

(mini)-batch: do one SGD update (averaging) per mini-batch

(mini)-batch size: number of data examples per mini-batch

epoch: one training run through all of the training data

iteration: number of mini-batches per epoch

typically, we “test” the model on the validation

data at the end of each epoch

TRAINING (+ VAL)/TEST SPLIT

32

Example

100,000 total (𝒙𝒏, 𝒚𝒏)

70,000 train

15,000 test

15,000 val

(shuffle it all once)

Suppose: batch size = 70:

1000 mini-batches in the training data (1000 iterations per epoch)

1000 gradient updates in an epoch, each averaged over 70 samples

these are typically processed serially: batch 1, batch 2, etc.

gradient updates are serial

(can change with many parallel compute nodes)

run inference (forward only) on val data after each epoch

monitor learning curve, iteration hyper-hyper-parameter search…

when done, run on test

VANISHING

GRADIENT

VANISHING GRADIENT PROBLEM

34

the gradient can get

small as we back-prop

See section 10.7 of Deep Learning
book for further discussion

[GBC - Deep Learning]

due to the squashing

activation compounded

effects

VANISHING GRADIENT PROBLEM

SQUASHING ACTIVATIONS

35

the gradient can get

small as we back-prop

due to the squashing activation

compounded effects

VANISHING GRADIENT PROBLEM

SQUASHING ACTIVATIONS

36

the maximum value of ሶ𝜎 ⋅ is 0.25…

VANISHING GRADIENT PROBLEM - RELU ACTIVATIONS

37

Clevert, Djork-Arné; Unterthiner, Thomas; Hochreiter, Sepp (2015-11-23). "Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)". arXiv:1511.07289

Clevert, Djork-Arné; Unterthiner, Thomas; Hochreiter, Sepp (2015-11-23). "Fast and Accurate Deep Network Learning by
Exponential Linear Units (ELUs)". arXiv:1511.07289

Biologically inspired - neurons firing

vs not firing

Solves vanishing gradient problem

Non-differentiable at 0, replace with

anything in [0,1]

ReLU can die if 𝑥 < 0

Leaky ReLU solves this, but

inconsistent results

ELU saturates for 𝑥 < 0, so less

resistant to noise

https://arxiv.org/pdf/1511.07289.pdf

ACTIVATIONS IN PYTORCH

38

https://pytorch.org/docs/stable/nn.html

https://pytorch.org/docs/stable/nn.html

https://www.tensorflow.org/api_docs/python/tf/keras/activations

ACTIVATIONS IN PYTORCH

39

hard_sigmoid sometimes used to reduce computation

ACTIVATIONS IN PYTORCH

40

binary classification:

1 output neuron with sigmoid and BCE

vs.

2 output neurons with softmax and MCE

soft-max:

produces 𝑀 × 1 probability mass

function use for 𝑀-ary

classification between mutually

exclusive classes (i.e., “1-hot”)

sigmoid:

produces probability of “class 1” for a

binary classification test

PARAMETER

INITIALIZATION

WEIGHT (AND BIAS) INITIALIZATION

42

how do we initialize 𝜃?

empirical observation: some initializations are better than others

zero initialization?

all linear activations are 0…

the 𝛿’s will be 0 too…

try random initialization…?

WEIGHT (AND BIAS) INITIALIZATION

43

Xavier (Glorot) Normal Initialization

This suggests:

Consider a linear function:
(assume all 𝑤 and 𝑥 are I.I.D.)

Xavier Glorot, Yoshua Bengio. Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics, PMLR 9:249-256, 2010.

WEIGHT (AND BIAS) INITIALIZATION

44

use same second moments with uniform initialization….

Xavier Glorot, Yoshua Bengio. Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics, PMLR 9:249-256, 2010.

Xavier (Glorot) Uniform Initialization

WEIGHT (AND BIAS) INITIALIZATION

Kaiming Normal Initialization

Kaiming Uniform Initialization

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Delving Deep into Rectifiers: Surpassing

Human-Level Performance on ImageNet Classification. Proceedings of ICCV ’15, pp 1026-1034. 45

Kaiming Initialization

Xavier does not account for nonlinear activations 𝐸 𝑥𝑘
2 ≠ 0 (e.g., ReLU)

COMPARISON OF INITIALIZERS

46

Histograms of a few weights in 2nd

junction after training for 10 epochs

Weights
initialized
with all 0s

Weights
stay as
all 0s !!

MNIST [784,200,10]

Regularization: None

BIAS INITIALIZATION

47

often the bias is initialized to zeros

may want to initialize to a small positive number when using

ReLU activations to prevent “dying"

Bias initialization typically does not affect performance as much as weight

initialization

PYTORCH INITIALIZERS

48

https://pytorch.org/docs/stable/nn.init.html

https://pytorch.org/docs/stable/nn.init.html

https://pytorch.org/docs/master/generated/torch.nn.Module.html

https://pytorch.org/docs/master/generated/torch.nn.Module.html

https://keras.io/initializers/
https://keras.io/initializers/

	Slide 1: Training Deep Neural Networks I
	Slide 2: Topic Outline
	Slide 3: Universal Approximation Theorem
	Slide 4: Universal Approximation Theorem
	Slide 5: Universal Approximation Theorem
	Slide 6: Universal Approximation Theorem
	Slide 7: Universal Approximation Theorem
	Slide 8: Universal Approximation Theorem
	Slide 9: Example From Class Project
	Slide 10: Universal Approximation Theorem
	Slide 11: Universal Approximation Theorem
	Slide 12: PyTorch
	Slide 13: Gentle Introduction to PyTorch
	Slide 14: CONDA Environment
	Slide 15: Introduction to PyTorch
	Slide 16: Introduction to PyTorch
	Slide 17: PyTorch — defining the model
	Slide 18: PyTorch — defining the model
	Slide 19: PyTorch— viewing model structure
	Slide 20: TensorBoard — inspect internal model structure
	Slide 21: PyTorch — training loop (no validation)
	Slide 22: PyTorch — monitoring performance (training)
	Slide 23: PyTorch — Check performance
	Slide 24: PyTorch — check performance
	Slide 25: PyTorch — check performance
	Slide 26: PyTorch — test set performance
	Slide 27: Dealing with Data Train vs. Test
	Slide 28: Training (+ Val)/Test Split
	Slide 29: Training (+Val)/Test Split
	Slide 30: Training (+ Val)/Test Split
	Slide 31: Training (+ Val)/Test Split
	Slide 32: Training (+ Val)/Test Split
	Slide 33: Vanishing Gradient
	Slide 34: Vanishing Gradient Problem
	Slide 35: Vanishing Gradient Problem Squashing Activations
	Slide 36: Vanishing Gradient Problem Squashing Activations
	Slide 37: Vanishing Gradient Problem - ReLu Activations
	Slide 38: Activations in PyTorch
	Slide 39: Activations in PyTorch
	Slide 40: Activations in PyTorch
	Slide 41: Parameter Initialization
	Slide 42: Weight (and bias) Initialization
	Slide 43: Weight (and bias) Initialization
	Slide 44: Weight (and bias) Initialization
	Slide 45: Weight (and bias) Initialization
	Slide 46: Comparison of Initializers
	Slide 47: Bias Initialization
	Slide 48: PyTorch Initializers

