USC Viterbi

School of Engineering

TRAINING DEEP
NEURAL NETWORKS |

EE 541 — UNIT 6A

DR. BRANDON FRANZKE

Spring 2025

USCViterbi

School of Engineering

TOPIC OUTLINE

* Universal Approximation Theorem

o Why Deep?
* A Gentle Introduction to PyTorch
« Vanishing gradient and activations
* Weight initialization
» Cost functions, regularization, dropout
* Optimizers
« Batch Normalization

* Hyperparameter optimization

USC Viterbi
School of Engineering

UNIVERSAL
APPROXIMATION
THEOREM

USCViterbi

School of Engineering

UNIVERSAL APPROXIMATION THEOREM

Let ¢(-) be a nonconstant, bounded, and monotone-increasing continuous function. Let I,

denote the my-dimensional unit hypercube [0, 1]™. The space of continuous functions on I,
is denoted by C(1,,). Then, given any function f 2 C(1,,) and & > 0, there exist an integer

my and sets of real constants o;, b;, and w;, wherei = 1,...,m;and j = 1, ..., my such that we
may define

F(xy,..,x,) = qucp(> w;ix; + b,-) (4.88)

i=1 j=1
as an approximate realization of the function f(-), that is,

|F()C1, tevy)Cm”) o .f(xb ey X,,,“)

for all xy, x,, ..., x,, that lie in the input space.

A single hidden layer MLP with squashing activation in the hidden layer and
linear output layer can approximate any “engineering function”

[Haykin] Simon Haykin, Neural Networks And Learning Machines 3rd Edition, Pearson, 2009,

USCViterbi

School of Engineering

UNIVERSAL APPROXIMATION THEOREM

How does the intuition behind this work?

http://neuralnetworksanddeeplearning.com/chap4.html

can create a
“bump” function

done by choosing large
weights in layer 1

s =-b/w (step
position)

(0.0)
(0.2)
(0.2)
(0.4)
(04)
(0.6)
(0.6)
(0.8)
(0.8)

(1.0)

Weighted output from hidden layer

h=-1.5 2
h=-18
h=-0.2 ,
h=-15
h=1.2

Average deviation: 0.45

Reset

Combine bump functions
to get a Riemann-like
approximation with many
nodes in hidden layer

USCViterbi

School of Engineering

UNIVERSAL APPROXIMATION THEOREM

What happens when we train a neural net on like this?

http://neuralnetworksanddeeplearning.com/chap4.html

y true =x>+5x?+2x—7, 1 hidden layer with 2 neurons

70 4 —— wil*hiddenout 1 —— wl*hidden out 1
— w2*hidden out 2 —— w2*hidden out 2
604 — bias < 601 —— w3+*hidden out 3
-==- y pred —— bias
50 | — y_true —-—- y pred
— y true
40 - v
40
30 A
20
] /
10 1 04 __/,/
04 /
-1041 —20 1

2.0

2.5

3.0

y true =x>+5x? +2x -7, 1 hidden layer with 3 neurons

USCViterbi

School of Engineering

UNIVERSAL APPROXIMATION THEOREM

What happens when we train a neural net on Neilson’s example?

def (x):

X X * np.sinf X) np.cos({ x)

3 hidden layers, 64 nodes each, ReLU activations

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 25 3.0

no dropout dropout (we will see later)

USCViterbi

School of Engineering

UNIVERSAL APPROXIMATION THEOREM

why go deep?

1) single hidden layer may need to be huge
2) not clear that SGD-BP can learn this good approximation

3) There are inherent advantages to more hidden layers

multiple layers can learn stages of classification or “case switches”

e.qg.,
Layer 1: detect if case A or case B holds

Layer 2: if case A, do algorithm A, else, do algorithm B

many problems suitable to neural nets have these properties -- e.g.,
“clamps/conditionals” --- multiple layers can model this more explicitly

USCViterbi

School of Engineering

EXAMPLE FROM CLASS PROJECT

class 0
10

S000
-0.8

0.6

4000

sample 3000

04

2000

1000 -

0.0

0 c 10 15
Block status

20 hidden nodes, shows whether relay is ON/OFF for each element in the dataset

Intuition: ReLU-based MLP is toggling switches based on classification.
Then applying a linear mapping (these are like the clamps/conditionals)

sample

6000

5000

4000

3000

2000

1000

class 1

10

Block status

15

USCViterbi

School of Engineering

UNIVERSAL APPROXIMATION THEOREM

why go deep?

96.5 ;
96.0
95.5
95.0
94.5
94.0
93.5
93.0
92.5
92.0 !

Test accuracy (percent)

l] | l | 1

3 4

) 6 7 8 9 10 11

Figure 6.6: Effect of depth. Empirical results showing that deeper networks generalize
better when used to transcribe multidigit numbers from photographs of addresses. Data

from (

). The test set accuracy consistently increases with increasing

depth. See figure 6.7 for a control experiment demonstrating that other increases to the
model size do not yield the same effect.

Deeper models tend to perform better

[GBC] lan Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, The MIT Press, 2016.

10

USCViterbi

School of Engineering
h d ? 97 | I | | |
why g0 deep: e *—e 3, convolutional ||
@ +—+ 3, fully connected
—
& %r ¥—¥ 11, convolutional
>
§ 94 | —
=
g o3l —_— |
&
g7
ﬁ 92 | N
91 | L | | |
deeper models 0.0 0.2 0.4 0.6 0.8 1.0
P Number of parameters x10%
tend to
Figure 6.7: Effect of number of parameters. Deeper models tend to perform better.
perform better
This is not merely because the model is larger. This experiment from
() shows that increasing the number of parameters in layers of convolutional networks

without increasing their depth is not nearly as effective at increasing test set performance,
as illustrated in this figure. The legend indicates the depth of network used to make
each curve and whether the curve represents variation in the size of the convolutional
or the fully connected layers. We observe that shallow models in this context overfit at
around 20 million parameters while deep ones can benefit from having over 60 million.
This suggests that using a deep model expresses a useful preference over the space of
functions the model can learn. Specifically, it expresses a belief that the function should
consist of many simpler functions composed together. This could result either in learning
a representation that is composed in turn of simpler representations (e.g., corners defined
in terms of edges) or in learning a program with sequentially dependent steps (e.g., first
locate a set of objects, then segment them from each other, then recognize them).

[GBC] lan Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, The MIT Press, 2016.

11

USC Viterbi

School of Engineering

PYTORCH

USCViterbi

School of Engineering

GENTLE INTRODUCTION TO PYTORCH

Use PyTorch 2.4 or 2.5

You can install PyTorch through anaconda

best to set up virtual-environment with conda

(or use pyenv to create and manage minimal virtualenvs)

| use: conda, PyTorch 2.4 (upg: 2.5), MacOS 15, Python 3.11
TorchVision 0.15, TensorBoard 2.17 (on PC: CUDA via conda)

13

USCViterbi

School of Engineering

CONDA ENVIRONMENT

conda create --name eeb541 work python=3.11

conda activate eeb541 work

mac (mps)
#conda install pytorch::pytorch torchvision torchaudio -c pytorch
pc (with cuda), check cuda version e.g. > 11.7 / 11.8

#conda install pytorch torchvision torchaudio pytorch-cuda -c pytorch -c

nvidia

conda install numpy scipy opencv matplotlib

conda install hbpy Jjupyter tensorboard seaborn tgdm pandas
conda install -c conda-forge torchinfo

extra

pip install torchviz

14

USCViterbi

School of Engineering

[FT

N T

[=s]

INTRODUCTION TO PYTORCH

Let’s code our first neural network!

import torch

import torch.nn as nn

import torchvision

import torchvision.transforms as transforms
import torch.nn.functional as F

import matplotlib.pyplot as plt

import numpy as np

train_set = torchvision.datasets.FashionMNIST(root = "./data”, train = True, download
transform = transforms.ToTensor())
test_set = torchvision.datasets.FashionMNIST(root = "./data”, train = False, download

transform = transforms.ToTensor())

train_loader = torch.utils.data.Dataloader(train_set, batch_size=188, shuffle=True)
test_loader = torch.utils.data.DatalLoader(test_set, batch_size=18@, shuffle=False)

model = torch.nn.Sequential(
nn.Linear(in_features=28%282, out features=128),
nn.RelLU(),
nn.Linear(in_features=128, out_features=18&)
#nn. Softmax(dim=1)

)

loss_func = nn.CrossEntropyloss()
optimizer = torch.optim.Adam(model.parameters(), lr=98.8e81)

num_epochs =
for epoch in range(num_epochs):

[---]

True,

True,

typical imports

PyTorch has standard datasets
built-in - auto-download

loaders feed data to your model

define a sequential network

specify loss function and optimizer

and training loop... details shortly

15

USCViterbi

School of Engineering

INTRODUCTION TO PYTORCH

Same implementation but use the “Functional API” to define the model

1 import torch

2 import torch.nn as nn

3 import torchvision

4 import torchvision.transforms as transforms
import torch.nn.functional as F

6 dimport matplotlib.pyplot as plt

import numpy as np

9 train_set = torchvision.datasets.FashionMNIST(root = "./data”, train = True, download =
18 transform = transforms.ToTensor())
11 test_set = torchvision.datasets.FashionMNIST (root = "./data”, train = False, download =
12 transform = transforms.ToTensor())

14 train_loader = torch.utils.data.Dataloader(train_set, batch_size=188, shuffle=True)
15 test_loader = torch.utils.data.DatalLoader(test_set, batch_size=188, shuffle=False)

17 class Net(nn.Module):
def __init_ (self):
super{Net, self)._ init_ ()
20 self.hidden = nn.Linear(num_pixels, 128)

]

I
o

3

21 self.output = nn.Linear(128, 18)
22

23 def forward(self, x):

24 x = F.relu(self.hidden(x))

25 ® = self.output(x)

26 return x

28 model = Net()

loss_func = nn.CrossEntropylLoss()
31 optimizer = torch.optim.Adam(model.parameters(), lr=8.8861)

3 num_epochs =
34 for epoch in range(num_epochs):

35 [...]

True,

True,

= define a torch.nn network (modular)

16

USCViterbi

School of Engineering

PYTORCH — DEFINING THE MODEL

Sequential
simple, quick
not very flexible

only allows for models that are a
sequence of layers (line-graph)

Use the nn.Module object for most models.

(next slide)

layer N

I:

17

USCViterbi

School of Engineering

PYTORCH — DEFINING THE MODEL

little more setup (net + forward) l

much more powerful: -\ -
concatenate
* Models with shared layers -

* Multi-input, multi-output models l

Modular -- torch.nn.Module

» Directed acyclic graphs (DAGs)
* Custom layer

» Custom function on intermediate layer’s output

USCViterbi

School of Engineering

PYTORCH— VIEWING MODEL STRUCTURE

print(model)

Net(
{hidden)}: Linear(in_features=784, out_features=123, bias=True)
{output): Linear(in_features=128, out_ features=18, bias=True)

)

48 from torchsummary import summary
41 summary{model, input size=(1, 1, 28%238))

Layer (type) Qutput Shape Param #
Linear-1 [-1, 1, 1, 128] 186,488
Linear-2 [-1, 1, 1, 18] 1,298

Total params: 181,778

Trainable params: 181,778
Hon-trainable params: 8

Input size (MB): @.@e
Forward/backward pass size (MB): @.88
Params size (MB): 8.39

Estimated Total Size (MB): @.39

19

USCViterbi

School of Engineering

TENSORBOARD — INSPECT INTERNAL MODEL STRUCTURE
- Net
. (Linear[output])
inéut
i
\ (Linearfhidden])
20

USCViterbi

School of Engineering

PYTORCH — TRAINING LOOP (NO VALIDATION)

8 num_epochs = 4

count = @

for epoch in range(num_epochs):

41 correct = @

432 for images, labels in train_loader:
43 count += 1

44 input = images.view(-1, 28%28)

46 # forward pass
47 outputs = model(input)
48 loss = loss_func(outputs)

[T =7
M 0

backprop
optimizer.zero_grad()
loss.backward()

Wl oW
(AT =Y

V5]

optimize
optimizer.step()

w1 oL
J o s

1]

not normally in training
predictions = torch.max{outputs, 1)[1]
correct += (predictions == labels).sum().numpy()

%]
[Fa]

m 0

print(f 'Epoch: {epoch+1:82d}, Iteration: {count:5d}, Loss: {loss.data:.4f}, " +
f'Accuracy: {182 * correct/len(train_loader.dataset):2.3f}%")

[T

& o h OhoLn

print('Finished Training')

Epoch: @1, Iteration: 688, Loss: 8.791%, Accuracy: £9.465%
Epoch: @2, Iteration: 1268, Loss: B8.5634, Accuracy: 86.118%
Epoch: @3, Iteration: 1888, Loss: 8.2925, Accuracy: 82.467%
Epoch: @4, Iteration: 2488, Loss: 8.4984, Accuracy: 83.515%
Finished Training

21

USCViterbi

School of Engineering

PYTORCH — MONITORING PERFORMANCE (TRAINING)

Gather loss and accuracy. Plot later.

for plots

38 loss_list = []
iteration_list = []

48 accuracy_list = []

42 num_epochs = 4

43 count = @

44 for epoch in range(num_epochs):
45 correct = @

n

46 for images, labels in train_loader:

count += 1
input = images.view(-1, 28%28)

[N s

forward pass
outputs = model(input)
loss = loss_func(outputs)

backprop
optimizer.zero_grad()
loss.backward()

optimize
optimizer.step()

U GELGEGEGEGEGEGRG L
Pl R

61 # not normally in training

62 predictions = torch.max(outputs, 1)[1]

Capture at desired interval
(per batch here)

correct += (predictions == labels).sum().numpy()

]

loss_list.append(loss.data)
iteration_list.append(count)

0 oga =

72 print('Finished Training")

accuracy list.append(correct / len{images))

print(f'Epoch: {epoch+1:02d}, Iteration: {count:5d}, Loss: {loss.data:.4f}, ' +
f'Accuracy: {18@ * correct/len(train_loader.dataset):2.3f}%")

then use standard plotting tools

fig = plt.figure()
ax = fig.gca()

fig.add_subplot(1, 2, 1)
plt.plot(iteration_list, loss_list)

ax.set_xlabel(' Iteration')
ax.set_ylabel({ 'Loss")

fig.add_subplot(1, 2, 2)
plt.plot(iteration_list, accuracy_list)

ax.set_xlabel(' Iteration’)
ax.set_ylabel{ Accuracy’)

plt.show()

22

USCViterbi

School of Engineering

PYTORCH — CHECK PERFORMANCE

results of our training run...

0.50 — loss 0.96 1 — acc
—— val_loss —— val_acc

0.45 0.94 1
@
S 0.40 0.92 A
>
2
S 0.35
= . >
S G 0.90
w —_
$ 0.30 g
Q < 0.88
(%))
© 0.25
o
2 0.86 -
£ 0.20

0.84 A
0.15
0.10 1 0.82 1 T T T T T T T T T
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
epochs epochs

over-fitting
23

USCViterbi

School of Engineering

PYTORCH — CHECK PERFORMANCE

let’s try running inference on an image...

Label | Class

0 T-shirt/top
1 Trouser

2 Pullover

3 Dress

4 Coat

5 Sandal

6 Shirt

7 Sneaker

8 Bag

9 Ankle boot

24

USCViterbi

School of Engineering

PYTORCH — CHECK PERFORMANCE

manual inference on a single image

1 image, label = test set[&]
2 prediction = model({image.view(-1, 28%*28)).reshape(1@)
3 class_decision = np.argmax{prediction)
4 for m,label in enumerate(classes):
if m == class_decision:
print{f'class={label:15s} soft-decision: {prediction[m]:»9.5f} (hard decision)")
else:
8 print(f'class={1abel:15s} soft-decision: {prediction[m]:»>2.5f}")

class=T-shirt/top soft-decision: -8.8%817
class=Trouser soft-decision: -8.86262
class=Pullover soft-decision: -©8.84838
class=Dress soft-decision: 8.684331
class=Coat soft-decision: -8.11377
class=Sandal soft-decision: 6.62234
class=5Shirt soft-decision: -8.84181
class=Sneaker soft-decision: 8.86481
class=Bag soft-decision: -8.82287
class=Ankle Boot soft-decision: 8.87681 (hard decision)

Label

Class

T-shirt/top

Trouser

Pullover

Dress

Coat

Sandal

Shirt

Sneaker

Bag

Ol (N[O | & |W [N

Ankle boot

25

USCViterbi

School of Engineering

PYTORCH — TEST SET PERFORMANCE

with torch.no_grad():
total = @
correct = @

0o~ o

for images, labels in test_loader:
model.eval()
2 images = images.to(device)

test = images.view(-1, num_pixels)
outputs = model(test).cpu()

W]

predictions = torch.max{outputs, 1)[1]
correct += (predictions == labels).sum().numpy()
total += len(labels)

(=] 4 on

1 accuracy = correct * 18 / total

loss_list.append(loss.data)
4 iteration list.append(count)
5 accuracy_list.append(accuracy)

Wmwww immw ww B s g

7 print(f'Epoch: {epoch+1:82d}, Iteration: {count:5d}, Loss: {loss.data:.4f}, Accuracy: {accuracy:.3f}%")

After 4 epochs Loss: 0.2738
(2400 iterations) Accuracy: 86.65%

26

USC Viterbi
School of Engineering

DEALING WITH

DATA
TRAIN VS. TEST

USCViterbi

School of Engineering

TRAINING (+ VAL)/TEST SPLIT

training
training
validation
test test

(training-)training: use this for SGD learning — trainable parameters

(training-)validation: use this for SGD learning — hyper-parameters

test: only use this when you are done to verify

mini-batches

mini-batches

mini-batches

mini-batches

validation

test

weights, biases

learning rate, batch size, etc.

28

USCViterbi

School of Engineering

TRAINING (+VAL)/TEST SPLIT

Typical Train/Validation/Test split:
70/15/15

val and test splits must be large enough to
capture natural variation in the data

val and test splits must be large enough to allow
reliable classification error estimates

So: want lots of data

29

USCViterbi

School of Engineering

TRAINING (+ VAL)/TEST SPLIT

mini-batches mini-batches
mini-batches | shuffle data mini-batches
>
mini-batches mini-batches
mini-batches mini-batches
validation validation
test test

shuffle all data in training (not including validation) after each epoch

good practice to shuffle all of the data once before the train/val/test split

30

USCViterbi

School of Engineering

TRAINING (+ VAL)/TEST SPLIT

(mini)-batch: do one SGD update (averaging) per mini-batch

(mini)-batch size: number of data examples per mini-batch

epoch: one training run through all of the training data

iteration: number of mini-batches per epoch

31

USCViterbi

School of Engineering

TRAINING (+ VAL)/TEST SPLIT

Example
100,000 total (x,,, y,)

70,000 train
15,000 val
15,000 test

Suppose: batch size = 70:
1000 mini-batches in the training data (1000 iterations per epoch)
1000 gradient updates in an epoch, each averaged over 70 samples
these are typically processed serially: batch 1, batch 2, etc.

gradient updates are serial

(can change with many parallel compute nodes)

run inference (forward only) on val data after each epoch
monitor learning curve, iteration hyper-hyper-parameter search...

when done, run on test

32

USC Viterbi
School of Engineering

VANISHING
GRADIENT

USCViterbi

School of Engineering

VANISHING GRADIENT PROBLEM

4 1 1 1 1
3k — OH
-
. -- 1\
-—
2 1k e o 2|]
3 _
= OF 3
o]
2 4
- -
3! »
o -2}
[a W)
-3} .
-4 1 1 1 1 1
—60 —40 —-20 0 20 40 60

Input coordinate

Figure 10.15: Repeated function composition. When composing many nonlinear functions
(like the linear-tanh layer shown here), the result is highly nonlinear, typically with most
of the values associated with a tiny derivative, some values with a large derivative, and
many alternations between increasing and decreasing. Here, we plot a linear projection of
a 100-dimensional hidden state down to a single dimension, plotted on the y-axis. The
z-axis is the coordinate of the initial state along a random direction in the 100-dimensional
space. We can thus view this plot as a linear cross-section of a high-dimensional function.
The plots show the function after each time step, or equivalently, after each number of

times the transition function has been composed.)
[GBC - Deep Learning]

the gradient can get
small as we back-prop

due to the squashing
activation compounded
effects

See section 10.7 of Deep Learning
book for further discussion

34

USCViterbi

School of Engineering

VANISHING GRADIENT PROBLEM

SQUASHING ACTIVATIONS

1
o) = l1+e®
tanh(x) = - _—Fe
et e "
= 20(2z) — 1

the gradient can get
small as we back-prop

1.00

0.75

0.50

0.25 1

0.00 1

—0.25

—0.50

—0.75

—1.00

— sigmoid
— tanh

due to the squashing activation
compounded effects

35

USCViterbi

School of Engineering

VANISHING GRADIENT PROBLEM
SQUASHING ACTIVATIONS

1.00 | —— sigmoid
- sigmoid derivative

o'(z) = o(x) (1 —o(x))

0.751
0.501
the maximum value of 4(-) is 0.25...

0.25

0.00 1

-8 -6 -4 -2 0 2 4 6 8

51 — (O'(Sl) © [ngz]) (O’(Sz) O] [ngg]) (O'(Sg) ® [Wi&;;]) (0'(84) ® [Wg(%]) (C(y, a5) © 0'(85))

36

USCViterbi

School of Engineering

VANISHING GRADIENT PROBLEM - RELU ACTIVATIONS

Biologically inspired - neurons firing
vs not firing

Solves vanishing gradient problem

Non-differentiable at 0, replace with
anything in [0,1]

ReLU can dieif x <0

Leaky RelLU solves this, but
inconsistent results

ELU saturates for x < 0, so less
resistant to noise

1 — RelU

— ELU, alpha=1
—— Leaky RelU, alpha=0.1

Clevert, Djork-Arné; Unterthiner, Thomas; Hochreiter, Sepp (2015-11-23). "Fast and Accurate Deep Network Learning by

Exponential Linear Units (ELUs)". arXiv:1511.07289

37

https://arxiv.org/pdf/1511.07289.pdf

USCViterbi

School of Engineering

ACTIVATIONS IN PYTORCH

Non-linear Activations (weighted sum, nonlinearity)

n

n

nn

n.ELU Applies the element-wise function:

n.Hardshrink Applies the hard shrinkage function element-wise:

n.Hardsigmoid Applies the element-wise function:

n.Hardtanh Applies the HardTanh function element-wise

rdniah Applies the hardswish function, element-wise, as described
in the paper:

1.LeakyRell Applies the element-wise function:

n.LogSigmoid Applies the element-wise function:

Allows the model to jointly attend to information from
different representation subspaces

.MultiheadAttention

https://pytorch.org/docs/stable/nn.html

class Net(nn.Module):
18 def __init_ (self):
) super(Net, self)._ init_ ()

self.hidden = nn.Linear(num_pixels, 128)

self.output = nn.Linear(128, 19)
2= def forward(self, x):
' X = F.relu(self.hidden(x))
x = self.output(x)
return x

38

https://www.tensorflow.org/api_docs/python/tf/keras/activations

USCViterbi

School of Engineering

ACTIVATIONS IN PYTORCH

CLASS torch.nn.Hardsigmoid [SOURCE]
1.0 1 — Hard Signmoid _ _ _
L . . Applies the element-wise function:
——— Logistical Signmoid
Hardsigmoid(x) = ¢ 1 if x > +3,
x/6+1/2 otherwise
0.6
Shape:
04 1 « Input: (N, #) where * means, any number of additional dimensions
s Output: (N, *) , same shape as the input
0.2 4
Examples:
0.0
_|4 _'3 _'2 _.1 6 i i é ;1 >>> m = nn.Hardsigmoid()

>>> input = torch.randn(2)
»>» output = m(input)

hard sigmoid sometimes used to reduce computation

39

USCViterbi

School of Engineering

ACTIVATIONS IN PYTORCH

S0

€ soft-max:
1 es1 produces M x 1 probability mass
h(s) = function use for M-ary
ZM_()l eSm : classification between mutually
m=)] - ({3 b3
oSM -1 exclusive classes (i.e., “1-hot”)
1 sigmoid:
0'(3) — produces probability of “class 1” for a
1+ e 3 binary classification test

binary classification:

1 output neuron with sigmoid and BCE

VS.

2 output neurons with softmax and MCE

40

USC Viterbi
School of Engineering

PARAMETER
INITIALIZATION

USCViterbi

School of Engineering

WEIGHT (AND BIAS) INITIALIZATION

oC
0 <+ 60— e how do we initialize 6?

empirical observation: some initializations are better than others
: t
0, =a; ® [Wlﬂélﬂ]

try random initialization...?

42

USCViterbi

School of Engineering

WEIGHT (AND BIAS) INITIALIZATION

Xavier (Glorot) Normal Initialization

Consider a linear function:

(assume all w and x are I.1.D.)

Y =wix1 + walg + -

Var(y) = N Var(w)Var(z)

)
if Var(w) = =
) =

then Var(y Var(ac)

This suggests:

2
g 1 ~
Wi, g

2
g (z)

Feedforward:

Backprop:

1
N
1
N,

+ WNITN a2

(ﬂ)] 11+bm)

(l) .
w0 ~ N (o,

2

Ni_1+ N

)

Xavier Glorot, Yoshua Bengio. Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, PMLR 9:249-256, 2010. 43

USCViterbi

School of Engineering

WEIGHT (AND BIAS) INITIALIZATION

Xavier (Glorot) Uniform Initialization

use same second moments with uniform initialization....

fw,fi?) ~ uniform(—a, +a)
2
0 a
ol = —
w3 w) ~ uniform 6 + 0
o2 1) = ” n N1+ N7\ N+ N
wij Ni—1+ N

6
a =
\/Nll + N

Xavier Glorot, Yoshua Bengio. Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, PMLR 9:249-256, 2010. 44

USCViterbi

School of Engineering

WEIGHT (AND BIAS) INITIALIZATION

Kaiming Initialization

Xavier does not account for nonlinear activations E|x?] # 0 (e.g., ReLU)

WO vl
w; N(O, N

(l) : 6 6 i L . L] L] L] L]
w, & ~ uniform —/ , 4/
i (N Nz1) Kaiming Uniform Initialization

45

) Kaiming Normal Initialization

USCViterbi

School of Engineering

COMPARISON OF INITIALIZERS

94 1
<
< g7
>
o
0
5 90
O
< gg —-04 -02 0.0 02 0.4
-
o
o
S 861
ﬁ —— Normal, o= 1, biases=0
> 84 —— Glorot Normal, biases=0.1
—— He Normal, biases=0.1
2 4 6 8 10
Epochs -0.4-0.2 0.0 0.2 0.4 -04 -02 0.0 02 0.4
MNIST [784,200,10] Histograms of a few weights in 2nd
Regularization: None junction after training for 10 epochs

46

USCViterbi

School of Engineering

BIAS INITIALIZATION

Bias initialization typically does not affect performance as much as weight
initialization

often the bias is initialized to zeros

may want to initialize to a small positive number when using
ReLU activations to prevent “dying”

47

USCViterbi

School of Engineering

PYTORCH INITIALIZERS

| torch.nn.init._uniform_(tensor, a=6. 06, b=1.8)

Fills the input Tensor with values drawn from the uniform distribution U(a, h) E

| torch.nn.init.normal_(tensor, mean=0.0, std=1.d)

r 2
Fills the input Tensor with values drawn from the normal distribution /N (mea,ll, std”).

| torch.nn.init.constant_(tensor, val) [SOURCE] (&

Fills the input Tensor with the value val .

| toxch.nn.init.ones_(tensor) SOURCE

Fills the input Tensor with the scalar value 1.

torch.nn.init.zeros_(tensor)

o

C
=)

m

Fills the input Tensor with the scalar value o.

| torch.nn.init.eye_(tensor)

Fills the 2-dimensional input Tensor with the identity matrix. Preserves the identity of the inputs in Linear layers, where as
many inputs are preserved as possible.

torch.nn.init.dirac_(tensor, groups=1)

Fills the {3, 4, 5}-dimensional input Tensor with the Dirac delta function. Preserves the identity of the inputs in
Convolutional layers, where as many input channels are preserved as possible. In case of groups=1, each group of
channels preserves identity

| torch.nn.init.xavier_uniform_{tensor, gain=1.6)

Fills the input Tensor with values according to the method described in Understanding the difficulty of training deep

feedforward neural networks - Glorot, X. & Bengio, Y. (2010), using a uniform distribution. The resulting tensor will have

values sampled from I —a, a) where

5

https://pytorch.org/docs/stable/nn.init.html

https://pytorch.org/docs/master/generated/torch.nn.Module.html

apply(fn: Callable(Module, None]) — T

Applies fn recursively to every submodule (as returned by .children()) as well as self. Typical use includes
initializing the parameters of a model (see also torch.nn.inic).

Example:

»>>» @torch.no_grad()
>>> def init_weights(m):

Py print(m)

Py if type(m) == nn.Linear
>>> m.weight.fill_(1.0)
>33 print(m.weight)

>>» net = nn.Sequential (nn.Linear(2, 2), nn.Lineax(2, 2))
>>> net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensox([[1., 1.1,
[1., 1.11)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.1,
[1., 1.1
Seguential(
(@) : Linear(in_features=2, out_features=2, bias=Txue)
(1): Lineax(in_features=2, out_features=2, bias=Tzue)
)
Sequential(
(8): Lineax(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=Tzue)

48

https://keras.io/initializers/
https://keras.io/initializers/

	Slide 1: Training Deep Neural Networks I
	Slide 2: Topic Outline
	Slide 3: Universal Approximation Theorem
	Slide 4: Universal Approximation Theorem
	Slide 5: Universal Approximation Theorem
	Slide 6: Universal Approximation Theorem
	Slide 7: Universal Approximation Theorem
	Slide 8: Universal Approximation Theorem
	Slide 9: Example From Class Project
	Slide 10: Universal Approximation Theorem
	Slide 11: Universal Approximation Theorem
	Slide 12: PyTorch
	Slide 13: Gentle Introduction to PyTorch
	Slide 14: CONDA Environment
	Slide 15: Introduction to PyTorch
	Slide 16: Introduction to PyTorch
	Slide 17: PyTorch — defining the model
	Slide 18: PyTorch — defining the model
	Slide 19: PyTorch— viewing model structure
	Slide 20: TensorBoard — inspect internal model structure
	Slide 21: PyTorch — training loop (no validation)
	Slide 22: PyTorch — monitoring performance (training)
	Slide 23: PyTorch — Check performance
	Slide 24: PyTorch — check performance
	Slide 25: PyTorch — check performance
	Slide 26: PyTorch — test set performance
	Slide 27: Dealing with Data Train vs. Test
	Slide 28: Training (+ Val)/Test Split
	Slide 29: Training (+Val)/Test Split
	Slide 30: Training (+ Val)/Test Split
	Slide 31: Training (+ Val)/Test Split
	Slide 32: Training (+ Val)/Test Split
	Slide 33: Vanishing Gradient
	Slide 34: Vanishing Gradient Problem
	Slide 35: Vanishing Gradient Problem Squashing Activations
	Slide 36: Vanishing Gradient Problem Squashing Activations
	Slide 37: Vanishing Gradient Problem - ReLu Activations
	Slide 38: Activations in PyTorch
	Slide 39: Activations in PyTorch
	Slide 40: Activations in PyTorch
	Slide 41: Parameter Initialization
	Slide 42: Weight (and bias) Initialization
	Slide 43: Weight (and bias) Initialization
	Slide 44: Weight (and bias) Initialization
	Slide 45: Weight (and bias) Initialization
	Slide 46: Comparison of Initializers
	Slide 47: Bias Initialization
	Slide 48: PyTorch Initializers

