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TOPIC OUTLINE

• Universal Approximation Theorem

◦ Why Deep?

• A Gentle Introduction to PyTorch

• Vanishing gradient and activations

• Weight initialization

• Cost functions, regularization, dropout

• Optimizers

• Batch Normalization

• Hyperparameter optimization
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UNIVERSAL APPROXIMATION THEOREM
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A single hidden layer MLP with squashing activation in the hidden layer and 

linear output layer can approximate any “engineering function”



UNIVERSAL APPROXIMATION THEOREM

How does the intuition behind this work?

http://neuralnetworksanddeeplearning.com/chap4.html

can create a 

“bump” function

done by choosing large 

weights in layer 1
Combine bump functions 

to get a Riemann-like 

approximation with many 

nodes in hidden layer
s = -b/w (step 

position)
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UNIVERSAL APPROXIMATION THEOREM
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What happens when we train a neural net on like this?

http://neuralnetworksanddeeplearning.com/chap4.html



UNIVERSAL APPROXIMATION THEOREM

7no dropout dropout (we will see later)

3 hidden layers, 64 nodes each, ReLU activations

What happens when we train a neural net on Neilson’s example?



UNIVERSAL APPROXIMATION THEOREM
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why go deep?

multiple layers can learn stages of classification or “case switches” 

e.g.,

many problems suitable to neural nets have these properties -- e.g., 

“clamps/conditionals” --- multiple layers can model this more explicitly

1) single hidden layer may need to be huge

2) not clear that SGD-BP can learn this good approximation

3) There are inherent advantages to more hidden layers

Layer 1: detect if case A or case B holds

Layer 2: if case A, do algorithm A, else, do algorithm B



EXAMPLE FROM CLASS PROJECT
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20 hidden nodes, shows whether relay is ON/OFF for each element in the dataset

Conditional Linear Regression: An alternative structure to Deep neural network with ReLU activation Qianmu Yu, Runmian Chang, Mo Shi 

Intuition: ReLU-based MLP is toggling switches based on classification.

Then applying a linear mapping (these are like the clamps/conditionals)



UNIVERSAL APPROXIMATION THEOREM
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Deeper models tend to perform better

why go deep?



UNIVERSAL APPROXIMATION THEOREM
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deeper models 

tend to 

perform better

why go deep?



PYTORCH



GENTLE INTRODUCTION TO PYTORCH
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Use PyTorch 2.4 or 2.5

You can install PyTorch through anaconda

best to set up virtual-environment with conda

(or use pyenv to create and manage minimal virtualenvs)

I use: conda, PyTorch 2.4 (upg: 2.5), MacOS 15, Python 3.11

TorchVision 0.15, TensorBoard 2.17 (on PC: CUDA via conda)



CONDA ENVIRONMENT
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conda create --name ee541_work python=3.11

conda activate ee541_work

# mac (mps)

#conda install pytorch::pytorch torchvision torchaudio -c pytorch

# pc (with cuda), check cuda version e.g. > 11.7 / 11.8

#conda install pytorch torchvision torchaudio pytorch-cuda -c pytorch -c 

nvidia

conda install numpy scipy opencv matplotlib

conda install h5py jupyter tensorboard seaborn tqdm pandas

conda install -c conda-forge torchinfo

# extra

pip install torchviz



INTRODUCTION TO PYTORCH
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Let’s code our first neural network!

typical imports

PyTorch has standard datasets

built-in – auto-download

loaders feed data to your model 

define a sequential network

specify loss function and optimizer

and training loop… details shortly



INTRODUCTION TO PYTORCH
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Same implementation but use the “Functional API” to define the model

define a torch.nn network (modular)



PYTORCH — DEFINING THE MODEL

Sequential

simple, quick

not very flexible

only allows for models that are a 

sequence of layers (line-graph)

layer 1

layer 2

layer N

Use the nn.Module object for most models.
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(next slide)



PYTORCH — DEFINING THE MODEL
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Modular -- torch.nn.Module

little more setup (net + forward)

much more powerful:

• Models with shared layers

• Multi-input, multi-output models

• Directed acyclic graphs (DAGs)

• Custom layer

• Custom function on intermediate layer’s output

concatenate 



PYTORCH— VIEWING MODEL STRUCTURE
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leaves something to be desired, so…

even better: TensorBoard – GUI + inspection + Evaluation



TENSORBOARD — INSPECT INTERNAL MODEL STRUCTURE
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PYTORCH — TRAINING LOOP (NO VALIDATION)
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PYTORCH — MONITORING PERFORMANCE (TRAINING) 
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Gather loss and accuracy.  Plot later.

then use standard plotting tools

Capture at desired interval

(per batch here)



PYTORCH — CHECK PERFORMANCE 
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over-fitting (bad!)

results of our training run…



PYTORCH — CHECK PERFORMANCE 
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the first test image is an Ankle Boot (class 9)

let’s try running inference on an image…



PYTORCH — CHECK PERFORMANCE 
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Pass many images to model() and the output 

represents batch predictions

manual inference on a single image



PYTORCH — TEST SET PERFORMANCE
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Loss:

Accuracy:

After 4 epochs

(2400 iterations)

0.2738

86.65%



DEALING WITH 

DATA
TRAIN VS. TEST



TRAINING (+ VAL)/TEST SPLIT
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(training-)training: use this for SGD learning — trainable parameters

(training-)validation: use this for SGD learning — hyper-parameters

test: only use this when you are done to verify

learning rate, batch size, etc.

weights, biases



TRAINING (+VAL)/TEST SPLIT
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Typical Train/Validation/Test split:

70/15/15

val and test splits must be large enough to 

capture natural variation in the data

val and test splits must be large enough to allow 

reliable classification error estimates

So: want lots of data



TRAINING (+ VAL)/TEST SPLIT
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good practice to shuffle all of the data once before the train/val/test split

shuffle all data in training (not including validation) after each epoch

perm = np.random.permutation(N_train)

x_train = x_train[perm]

y_train = y_train[perm]



TRAINING (+ VAL)/TEST SPLIT
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(mini)-batch: do one SGD update (averaging) per mini-batch

(mini)-batch size: number of data examples per mini-batch

epoch: one training run through all of the training data

iteration: number of mini-batches per epoch

typically, we “test” the model on the validation 

data at the end of each epoch



TRAINING (+ VAL)/TEST SPLIT
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Example

100,000 total (𝒙𝒏, 𝒚𝒏)

70,000 train

15,000 test

15,000 val

(shuffle it all once)

Suppose: batch size = 70:

1000 mini-batches in the training data (1000 iterations per epoch)

1000 gradient updates in an epoch, each averaged over 70 samples

these are typically processed serially: batch 1, batch 2, etc.

gradient updates are serial

(can change with many parallel compute nodes)

run inference (forward only) on val data after each epoch

monitor learning curve, iteration hyper-hyper-parameter search… 

when done, run on test



VANISHING 

GRADIENT



VANISHING GRADIENT PROBLEM
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the gradient can get 

small as we back-prop

See section 10.7 of Deep Learning 
book for further discussion

[GBC - Deep Learning]

due to the squashing 

activation compounded 

effects



VANISHING GRADIENT PROBLEM

SQUASHING ACTIVATIONS
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the gradient can get 

small as we back-prop

due to the squashing activation 

compounded effects



VANISHING GRADIENT PROBLEM

SQUASHING ACTIVATIONS
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the maximum value of ሶ𝜎 ⋅  is 0.25…



VANISHING GRADIENT PROBLEM - RELU ACTIVATIONS
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Clevert, Djork-Arné; Unterthiner, Thomas; Hochreiter, Sepp (2015-11-23). "Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)". arXiv:1511.07289

Clevert, Djork-Arné; Unterthiner, Thomas; Hochreiter, Sepp (2015-11-23). "Fast and Accurate Deep Network Learning by 
Exponential Linear Units (ELUs)". arXiv:1511.07289

Biologically inspired - neurons firing 

vs not firing

Solves vanishing gradient problem

Non-differentiable at 0, replace with 

anything in [0,1]

ReLU can die if 𝑥 < 0

Leaky ReLU solves this, but 

inconsistent results

ELU saturates for 𝑥 < 0, so less 

resistant to noise

https://arxiv.org/pdf/1511.07289.pdf


ACTIVATIONS IN PYTORCH
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https://pytorch.org/docs/stable/nn.html

https://pytorch.org/docs/stable/nn.html

https://www.tensorflow.org/api_docs/python/tf/keras/activations


ACTIVATIONS IN PYTORCH
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hard_sigmoid sometimes used to reduce computation



ACTIVATIONS IN PYTORCH
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binary classification: 

1 output neuron with sigmoid and BCE

vs.

2 output neurons with softmax and MCE

soft-max: 

produces 𝑀 × 1 probability mass 

function use for 𝑀-ary 

classification between mutually 

exclusive classes (i.e., “1-hot”)

sigmoid: 

produces probability of “class 1” for a 

binary classification test



PARAMETER 

INITIALIZATION



WEIGHT (AND BIAS) INITIALIZATION
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how do we initialize 𝜃?

empirical observation: some initializations are better than others

zero initialization? 

all linear activations are 0…

the 𝛿’s will be 0 too…

try random initialization…?



WEIGHT (AND BIAS) INITIALIZATION
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Xavier (Glorot) Normal Initialization

This suggests:

Consider a linear function:
(assume all 𝑤 and 𝑥 are I.I.D.)

Xavier Glorot, Yoshua Bengio. Proceedings of the Thirteenth International 

Conference on Artificial Intelligence and Statistics, PMLR 9:249-256, 2010.



WEIGHT (AND BIAS) INITIALIZATION
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use same second moments with uniform initialization….

Xavier Glorot, Yoshua Bengio. Proceedings of the Thirteenth International 

Conference on Artificial Intelligence and Statistics, PMLR 9:249-256, 2010.

Xavier (Glorot) Uniform Initialization



WEIGHT (AND BIAS) INITIALIZATION

Kaiming Normal Initialization

Kaiming Uniform Initialization

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Delving Deep into Rectifiers: Surpassing 

Human-Level Performance on ImageNet Classification. Proceedings of ICCV ’15, pp 1026-1034. 45

Kaiming Initialization

Xavier does not account for nonlinear activations 𝐸 𝑥𝑘
2 ≠ 0 (e.g., ReLU)



COMPARISON OF INITIALIZERS
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Histograms of a few weights in 2nd 

junction after training for 10 epochs

Weights 
initialized 
with all 0s

Weights 
stay as 
all 0s !!

MNIST [784,200,10]

Regularization: None



BIAS INITIALIZATION
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often the bias is initialized to zeros

may want to initialize to a small positive number when using 

ReLU activations to prevent “dying"

Bias initialization typically does not affect performance as much as weight 

initialization



PYTORCH INITIALIZERS
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https://pytorch.org/docs/stable/nn.init.html

https://pytorch.org/docs/stable/nn.init.html

https://pytorch.org/docs/master/generated/torch.nn.Module.html

https://pytorch.org/docs/master/generated/torch.nn.Module.html

https://keras.io/initializers/
https://keras.io/initializers/
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