
Spring 2025

TRAINING DEEP
NEURAL NETWORKS II

DR. BRANDON FRANZKE

EE 541 – UNIT 6B

TOPIC OUTLINE

• Universal Approximation Theorem

◦ Why Deep?

• A Gentle Introduction to PyTorch

• Vanishing gradient and activations

• Weight initialization

• Cost functions, regularization, dropout

• Optimizers

• Batch Normalization

• Hyperparameter optimization
2

COST (LOSS)

FUNCTIONS

3

COST (LOSS) FUNCTIONS

some already covered, but let’s review and see how

they translate to PyTorch

simplified notation:

last layer activation

labels

Assume 𝑀 output nodes, so these are

𝑴 × 𝟏 vectors

𝐬

𝐚 = 𝐡(𝐬)

𝐲

4

last layer pre-activation (linear activation)

LOSS FUNCTIONS — L2 FOR REGRESSION

5

average squared error

these are equivalent

PyTorch implements the mean by default, see options

(good since it is normalized for number of classes)

for BP Initialization

𝑑

𝑑𝑎
𝑦 − 𝑎 2 = 2 𝑦 − 𝑎

𝐶 = 𝐲 − 𝐚 2
2 = ෍

𝑖=1

𝑀

𝑦𝑖 − 𝑎𝑖
2

𝐶 =
1

𝑀
𝐲 − 𝐚 2

2 =
1

𝑀
෍

𝑖=1

𝑀

𝑦𝑖 − 𝑎𝑖
2

(squared) L2 norm of error

or sum of squared error

LOSS FUNCTIONS — L1 FOR REGRESSION

6

average absolute error

for BP Initialization

𝐶 = 𝐲 − 𝐚 1 = ෍

𝑖=1

𝑀

𝑦𝑖 − 𝑎𝑖

𝐶 =
1

𝑀
𝐲 − 𝐚 1 =

1

𝑀
෍

𝑖=1

𝑀

𝑦𝑖 − 𝑎𝑖

𝑑

𝑑𝑎
𝑦 − 𝑎 = sgn 𝑦 − 𝑎

= ቊ
+1 𝑎 > 𝑦
−1 𝑎 < 𝑦

L1 norm of error

or sum of absolute error

these are equivalent

PyTorch implements the mean by default, see options

(good since it is normalized for number of classes)

LOSS FUNCTIONS — L1 VS L2

7

L2 penalizes large error

more than L1

L2 corresponds to

power/energy for ECE

L1 will typically induce sparsity in

your weights - allows a few large

weights and many other weights are

near 0

LOSS FUNCTIONS — MULTICATEGORY CROSS ENTROPY

8

If activations are outputs of a softmax then interpret

as probability of class 𝑖

𝐶 = − ෍

𝑖=1

𝑀

𝑦𝑖 ln 𝑎𝑖 = ෍

𝑖=1

𝑀

𝑦𝑖 ln
1

𝑎𝑖

𝛅(𝐿) = 𝐚(𝐿) − 𝐲BP gradient initialization:

LOSS FUNCTIONS — MULTICATEGORY CROSS ENTROPY

9

(np.log(0.9) + np.log(0.89) + np.log(0.94)) / 3

= -0.094590

(averaged over batch size)

Recall, MCE is the negative log-likelihood

(NLL) with regression error model:

𝐶 = − ෍

𝑖=1

𝑀

𝑦𝑖 ln 𝑎𝑖 𝐶 = − ln 𝑎𝑚

Class 𝑚 is true

𝑃 𝑐𝑙𝑎𝑠𝑠 = 𝑖 = 𝑎𝑖

Recall, with one-hot (hard labels)

LOSS FUNCTIONS — MULTICATEGORY CROSS ENTROPY

10

PyTorch does not include soft-label

loss function

Write your own (left)

or use nn.KLDivLoss

𝐶 = − ෍

𝑖=1

𝑀

𝑦𝑖 ln 𝑎𝑖

With soft labels we use the general form

Recall, KL-divergence is a constant offset from MCE

between the 𝒚 and 𝒂 probability mass functions

COST (LOSS) FUNCTIONS — BINARY CROSS ENTROPY

11

for 𝑀 = 2 outputs — binary classification

Same as MCE with 𝑎0 = 𝑎, 𝑎1 = 1 − 𝑎

PyTorch uses this

Compare with nn.BCEWithLogitsLoss()

𝐶 = −𝑦 ln 𝑎 − 1 − 𝑦 ln 1 − 𝑎 = 𝑦 ln
1

𝑎
+ 1 − 𝑦 ln

1

1 − 𝑎

def bce(y,a):

 return -1*y*np.log(a+1e-10) -(1-y)*np.log(1-a+1e-10)

np.mean(bce(np.array([0,1,0]), np.array([0.6, 0.8, 0.1])))

0.414932

CROSS ENTROPY LOSS — “FROM LOGITS”

12

numerically simpler (and more stable) to compute

Loss(activation(𝑠)) in one step

example: binary cross entropy

loss directly from linear activation

Use this if you do not need a pmf out of your trained model

— i.e., if you will threshold the outputs of the trained model

Compare with nn.NLLLoss()

𝐶 = ln 1 + 𝑒𝑦𝑠
𝐶 = −𝑦 ln 𝑎 − 1 − 𝑦 ln 1 − 𝑎

𝑎 = 𝜎 𝑠

= 1 + 𝑒−𝑠 −1

𝐶 = 𝑦 ln 1 + 𝑒−𝑠 + 1 − 𝑦 ln 1 + 𝑒+𝑠

= ln 1 + 𝑒𝑦𝑠

𝑦 = −1 𝑦

CROSS ENTROPY LOSS — “FROM LOGITS”

13

𝐶 = 𝐾 𝐬 − ෍

𝑖=1

𝑀

𝑦𝑖𝑠𝑖

𝐶 = 𝐾 𝐬 − 𝑠𝑚

Class 𝑚 is true, hard labels

𝐶 = − ෍

𝑖=1

𝑀

𝑦𝑖 ln
𝑒𝑠𝑖

σ𝑗 𝑒𝑠𝑗

= − ෍

𝑖=1

𝑀

𝑦𝑖 𝑠𝑖 − 𝐾 𝐬

= − ෍

𝑖=1

𝑀

𝑦𝑖𝑠𝑖 + 𝐾 𝐬

𝐾 𝐬 = ln ෍

𝑗

𝑒𝑠𝑗

loss directly from linear activation

numerically simpler (and more stable) to compute

Loss(activation(𝑠)) in one step

example: multicategory cross entropy

CROSS ENTROPY LOSS — “FROM LOGITS”

14

numerically stable approach

loss directly from linear activation:

𝐶 = max𝑗
∗ 𝑠𝑗 − ෍

𝑖=1

𝑀

𝑦𝑖𝑠𝑖

Class 𝑚 is true, hard labels

𝐶 = max𝑗
∗ 𝑠𝑗 − 𝑠𝑚

𝐾 𝐬 = ln ෍

𝑗

𝑒𝑠𝑗

= max𝑗
∗ 𝑠𝑗

max∗ 𝑥, 𝑦 = ln 𝑒𝑥 + 𝑒𝑦

= max 𝑥, 𝑦 + ln 1 + 𝑒− 𝑥−𝑦

max∗ 𝑥, 𝑦, 𝑧 = ln 𝑒𝑥 + 𝑒𝑦 + 𝑒𝑧

= max∗ max∗ 𝑥, 𝑦 , 𝑧

HINGE LOSS

15

for binary classifier with target/labels in −1, +1

typically use linear output activation

torch.nn.MarginRankingLoss, margin=1

𝐶 = max 1 − 𝑦𝑎, 0 𝑎 = 𝑠, 𝑦 ∈ −1, +1

penalize misclassification (threshold)

PYTORCH LOSS FUNCTIONS

16https://pytorch.org/docs/master/nn.html#loss-functions

CUSTOM LOSS FUNCTIONS

17

PyTorch = simple custom loss functions

reimplementation of nn.MSELoss

WEIGHT

REGULARIZATION

WHY REGULARIZE

trade-off between over and under fitting

is the Bias-Variance trade-off

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http://www.deeplearningbook.org.

Main goal of

Machine Learning

is to GENERALIZE

19

REGULARIZERS

20

When people say “regularizer” they usually mean a narrower definition:

an additive term to the loss function that prevents

weights from getting too large

regularization is anything you do in training that is aimed at

improving generalization over accuracy —

i.e., anything that does not optimize the cost on the training data

Main goal of Machine Learning is to

GENERALIZE

HOW TO REGULARIZE

21

Why do large weights correspond to over-fitting???

weight evolution learning curve (loss) L2 norm of weights

MacKay, Information Theory and Inference, Cambridge University Press, 2003

HOW TO REGULARIZE

22

learning curve (loss)

This is an experimental observation
regularizer coefficient

weight evolution

(L2 regularization)

MacKay, Information Theory and Inference, Cambridge University Press, 2003

REGULARIZERS — L1, L2

23

As we saw earlier: these can be

viewed as being induced by an a

priori distribution on the weights

with MAP weight estimation

𝐶 = 𝐶no−reg + 𝜆 𝐰 2
2

𝐶 = 𝐶no−reg + 𝜆 𝐰 1

𝑤 ← 𝑤 − 𝜂
𝜕𝐶

𝜕𝑤
+ 2𝜆𝑤

𝑤 ← 𝑤 − 𝜂
𝜕𝐶

𝜕𝑤
+ 𝜆 sgn(𝑤)

L2 regularization

(weight decay)

L1 regularization

(LASSO)

L2: Gaussian prior

L1: Laplace prior

REGULARIZERS

24

𝜆 ≈
Importance of small weights

Importance of minimizing training loss

𝜆 = 0 𝑤∗ ∼ arg min 𝐶no−reg 𝐰

𝜆 = ∞ 𝑤∗ ∼ 0

Typically: 10−5 ≲ 𝜆 ≲ 10−3

under-fitting

could be over-fitting, depends on

capacity of model, dataset

properties, and inference problem

REGULARIZERS IN PYTORCH

25

https://pytorch.org/docs/stable/optim.html

Most optimizers include a weight_decay parameter

𝐿2 penalty, default = 0

works with autograd package

Use per-parameter

options for more control

https://www.tensorflow.org/api_docs/python/tf/keras/regularizers?hl=de

REGULARIZERS IN PYTORCH

26

But how to back-propagate with regularized loss???

autograd keeps track!

LET’S TRY L2 REGULARIZATION…

27

just using regularization, we need 𝜆~1e-3 to prevent over-

fitting, but the loss is much higher (~0.45 vs 0.1)

LET’S TRY L2 REGULARIZATION…

28

not totally satisfying!same trend as the loss…

(note: this is with 80/20 train/loss split)

DROPOUT

REGULARIZATION

DROPOUT — A DIFFERENT TYPE OF REGULARIZATION

30

remove nodes in a layer with some dropout probability/rate

the random pattern is generated at the start of each mini-batch

and held fixed during that mini-batch

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent

neural networks from overfitting,” Journal of Machine Learning Research, vol. 15, pp. 1929–1958, 2014

DROPOUT

very effective at reducing over fitting and improving generalization

31
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent

neural networks from overfitting,” Journal of Machine Learning Research, vol. 15, pp. 1929–1958, 2014

DROPOUT — ONLY DURING TRAINING!

32

Dropout is used during training, but in inference mode, all

nodes are present

for inference, replace the trained weights with 𝑝 ⋅ 𝑤,

where (1 − 𝑝) is the dropout rate

(ad hoc due to nonlinearities, but it works well enough)

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent

neural networks from overfitting,” Journal of Machine Learning Research, vol. 15, pp. 1929–1958, 2014

DROPOUT EXAMPLE

33
http://neuralnetworksanddeeplearning.com/chap4.html

What happens when we train a neural net on Neilson’s nonlinear function?

3 hidden layers, 64 nodes each, ReLU activations

no dropout 20% Dropout

DROPOUT INTUITION

34

Drop Drop

Drop

Drop

Dropout can be viewed as an efficient way to do this in a single network

Ensemble methods: train multiple networks for same task and average

individual (or small groups of) nodes must do a reasonable job on he task w/o

the deleted nodes lead to Robustness/Generalization

DROPOUT IN PYTORCH – JUST ANOTHER LAYER

35

Dropout layer has no trainable parameters —it is an on/off mask

that follows each node in the Dense layer

some layers have dropout built-in (e.g., RNNs)

DROPOUT WITH NO L2 REGULARIZATION

36

with dropout of ~ 60%, we are not over-fitting and we have a loss of ~ 0.35

(better than L2 regularization in this case)

DROPOUT WITH NO L2 REGULARIZATION

37

similar trend as loss

(better than L2 regularization in this case)

DROPOUT AND L2 REGULARIZATION

38
best achieves test loss ~0.4, test accuracy ~ 88%

CONCLUSIONS FROM REGULARIZATION EXPERIMENTS

39

A combination of dropout and L2 regularization worked best

This required a pretty-high dropout rate plus regularization

to not over-fit…

What does this suggest to you??

Nominal Values:

dropout rate: ≈20%

L2 Regularization: [1e-5, 1e-3]Note: we will see ~94% accuracy with CNNs on this problem

Main goal of Machine Learning is to

GENERALIZE

SMALLER MODEL, LESS REGULARIZATION

40

results with 100 hidden neurons

SMALLER MODEL, LESS REGULARIZATION

41

similar results with 48 hidden neurons

ANOTHER REGULARIZATION METHOD

42

stop at ~10 epochs

stop training when val starts performs consistently better than train

“early stopping”

OPTIMIZERS

OPTIMIZERS

Three common modifications:

• 1 and 2 usually associated with the “optimizer”

• learning rate schedule considered a separate parameter tuning task

Optimizers are modifications to standard

Stochastic Gradient Descent (SGD)

1. Gradient filtering

2. Gradient normalization

3. Learning rate schedule

44

LTI FILTER

REVIEW

45

REVIEW OF ARMA LTI FILTERS

46

Moving Average component

Autoregressive component

this is the canonical block

diagram for an 𝑳th order filter

REVIEW OF ARMA LTI FILTERS

47

first order ARMA filter

𝑦 𝑛 = −𝑎 1 𝑦 𝑛 − 1 + 𝑏 0 𝑥 𝑛 + 𝑏 1 𝑥[𝑛 − 1]

𝐻 𝑧 =
𝑏 0 + 𝑏 1 𝑧−1

1 + 𝑎 1 𝑧−1

REVIEW OF FIRST ORDER LTI FILTERS

48

𝑦 𝑛 = −𝑎 1 𝑦 𝑛 − 1 + 𝑏 0 𝑥 𝑛

𝐻 𝑧 =
𝑏 0

1 + 𝑎 1 𝑧−1

special cases for AR1:

Unit DC-Gain AR1:

Unit input-Gain AR1:

has input-gain = (1 − 𝛼)

has DC-gain = 1/(1 − 𝛼)

Recall: as 𝛼 approaches 1, the filter gains

memory and behaves as low-pass

𝑦 𝑛 = 𝛼𝑦 𝑛 − 1 + 1 − 𝛼 𝑥 𝑛

𝐻 𝑧 =
1 − 𝛼

1 + 𝛼𝑧−1

𝑦 𝑛 = 𝛼𝑦 𝑛 − 1 + 𝑥 𝑛

𝐻 𝑧 =
1

1 + 𝛼𝑧−1

REVIEW OF FIRST ORDER LTI FILTERS

49

unit step response with 𝛼 = 0.9

𝑠 𝑛 = 1 − 𝛼𝑛+1

𝑠 𝑛 =
1 − 𝛼𝑛+1

1 − 𝛼

special cases for AR1:

Unit DC-Gain AR1:

Unit input-Gain AR1:

has input-gain = (1 − 𝛼)

has DC-gain = 1/(1 − 𝛼)

Recall: as 𝛼 approaches 1, the filter gains

memory and behaves as low-pass

𝑦 𝑛 = 𝛼𝑦 𝑛 − 1 + 1 − 𝛼 𝑥 𝑛

𝐻 𝑧 =
1 − 𝛼

1 + 𝛼𝑧−1

𝑦 𝑛 = 𝛼𝑦 𝑛 − 1 + 𝑥 𝑛

𝐻 𝑧 =
1

1 + 𝛼𝑧−1

TRANSIENT COMPENSATION

50

transient compensation

transient compensated step response

works for any scaled

step input!

𝑦 𝑛 = 𝛼𝑦 𝑛 − 1 + 1 − 𝛼 𝑥[𝑛]

𝐻 𝑧 =
1 − 𝛼

1 − 𝛼𝑧−1

𝑠 𝑛 = 1 − 𝛼𝑛+1

Unit DC Gain AR1: transient to reach steady state DC response

Unit input Gain AR1: pole dependent DC gain

TRANSIENT COMPENSATION - NOISY EXAMPLE

51

Transient compensation

this example is a cosine in noise

(𝛼 = 0.9)

nice signal processing idea

(comes from deep learning AFAIK)

DEEP-LEARNING

OPTIMIZERS

52

SUMMARY OF OPTIMIZERS

53

gradient filtering gradient normalization grad variance filter learning rate schedule

SGD none none n/a separate

SGD w/ momentum AR1, unit input gain none n/a separate

SGD w/ Nesterov Momentum ARMA1 (1 pole, 1 zero) none n/a separate

Adagrad none yes summer
separate, but gradient norm

does alter

Adadelta none yes AR1, unit DC gain
separate, but gradient norm

does alter

RMSprop none yes AR1, unit DC gain
separate, but gradient norm

does alter

Adam
AR1, unit input gain,

transient compensation
yes

AR1, unit input gain,

transient compensation

separate, but gradient norm

does alter

Nadam (Adam w/ Nesterov)
ARMA1, transient

compensation
yes

ARMA1, transient

compensation

separate, but gradient norm

does alter

Ruder, Sebastian. "An overview of gradient descent optimization algorithms." arXiv preprint arXiv:1609.04747 (2016).

GRADIENT

FILTERING

54

GENERAL OPTIMIZER STRUCTURE + SGD

55

parameter update:

input step/gradient (update):

𝑖 ~ indexes parameter updates

(i.e., mini-batch)𝜃 𝑖 = 𝜃 𝑖 − 1 + Δ 𝑖

∇ 𝑖 =
𝜕𝐶

𝜕𝜃[𝑖 − 1]
𝑔 𝑖 = −𝜂

𝜕𝐶

𝜕𝜃[𝑖 − 1]

SGD: SGD with momentum:

Δ 𝑖 = 𝑔[𝑖]

𝑣 𝑖 = 𝛼𝑣 𝑖 − 1 + 𝑔 𝑖

Δ 𝑖 = 𝑣[𝑖]

𝑣 is called the “velocity”

𝛼 is called “momentum”

(𝜶~𝟎. 𝟗)

Momentum: low-pass filter on gradient —

removes high-frequency gradient noise

“STANDARD” MOMENTUM

56

note that your momentum and learning rate are coupled

choosing larger momentum effectively increases your learning rate

Momentum: low-pass filter on the gradient

removes high-frequency gradient noise

SGD WITH NESTEROV MOMENTUM

57

𝜃 𝑖 = 𝜃 𝑖 − 1 + Δ 𝑖

∇ 𝑖 =
𝜕𝐶

𝜕𝜃[𝑖 − 1]
𝑔 𝑖 = −𝜂

𝜕𝐶

𝜕𝜃[𝑖 − 1]

𝑣 𝑖 = 𝛼𝑣 𝑖 − 1 + 𝑔 𝑖

Δ 𝑖 = 1 + 𝛼 𝑣 𝑖 − 𝛼𝑣 𝑖 − 1

parameter update:

input step/gradient (update):

𝑣 is called the “velocity”

𝛼 is called “momentum”

(𝜶~𝟎. 𝟗)

SGD WITH NESTEROV MOMENTUM

58

note that your momentum and learning rate are coupled

choosing larger momentum effectively increases your learning rate

Momentum: low-pass filter on the gradient

removes high-frequency gradient noise

STANDARD MOMENTUM VS NESTEROV MOMENTUM

59

standard

Nesterov

standard momentum attenuates high frequencies

more than Nesterov momentum

NESTEROV MOMENTUM (TYPICAL MOTIVATION)

60

Motivated as compute “preliminary” parameter update before

updating velocity and then adjust for velocity update

what exactly is this??

… it’s the post-update value

https://jlmelville.github.io/mize/nesterov.html

typical explanation

“Bengio’s Formulation”

This is what PyTorch does!

𝑣𝑡 = 𝜇𝑡−1𝑣𝑡−1 − 𝜖𝑡−1∇𝑓 𝜃𝑡−1 + 𝜇𝑡−1𝑣𝑡−1

𝜃𝑡 = 𝜃𝑡−1 + 𝑣𝑡

𝑣𝑡 = 𝜇𝑡−1𝑣𝑡−1 − 𝜖𝑡−1∇𝑓 𝚯𝑡−1

𝚯𝑡 = 𝚯𝑡−1 − 𝜇𝑡−1𝑣𝑡−1 + 𝜇𝑡𝑣𝑡 + 𝑣𝑡

= 𝚯𝑡−1 + 𝜇𝑡𝜇𝑡−1𝑣𝑡−1 + 1 + 𝜇𝑡 𝜖𝑡−1∇𝑓 𝚯𝑡−1

Bengio, Yoshua, Nicolas Boulanger-Lewandowski, and Razvan Pascanu. "Advances in optimizing recurrent

networks." 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2013.

Effect: adjust momentum

coefficient invariant to

learning rate

NESTEROV MOMENTUM

61

“Bengio’s Formulation”

this formulation makes the pattern clear: choose any low-pass filter for

this task — i.e., optimize a second order ARMA filter (e.g., Butterworth)

𝑣 𝑖 = 𝛼𝑣 𝑖 − 1 + 𝑔 𝑖

𝜃 𝑖 = 𝜃 𝑖 − 1 + 1 + 𝛼 𝑣 𝑖 − 𝛼𝑣 𝑖 − 1

Δ 𝑖 = 1 + 𝛼 𝑣 𝑖 − 𝛼𝑣 𝑖 − 1

= 𝑣 𝑖 + 𝛼 𝑣 𝑖 − 𝑣 𝑖 − 1
~acceleration

GRADIENT

NORMALIZATION

62

GRADIENT NORMALIZATION

63

this is done by using a low-pass filter on the square of these quantities

— i.e., like computing the sample second moment

parameter update:

input step/gradient (update):

Can compute the RMS value of

𝜃 𝑖 = 𝜃 𝑖 − 1 + Δ[𝑖]

∇ 𝑖 =
𝜕𝐶

𝜕𝜃[𝑖 − 1]
𝑔 𝑖 = −𝜂

𝜕𝐶

𝜕𝜃[𝑖 − 1]

∇ 𝑖 or 𝑔 𝑖

Idea: estimate gradient RMS and normalize

GRADIENT NORMALIZATION EXAMPLES

64

Adagrad:

RMSprop:

Adadelta:

ADAM (THE BEST OF ALL WORLDS?)

65

use unit-DC gain filters for gradient filtering and for computing

the second moment

use transient compensation to reduce

start-up effects of filters

D. P. Kingma, K. L. Ba, ADAM: A Method for Stochastic Optimization, ICLR 2015

ADAM IMPLEMENTATION

66D. P. Kingma, K. L. Ba, ADAM: A Method for Stochastic Optimization, ICLR 2015

ADAM IN PYTORCH

67

https://pytorch.org/docs/stable/optim.html#torch.optim.Adam

https://pytorch.org/docs/stable/optim.html#torch.optim.Adam

Default:

Tuned:
my_adam = optim.Adam(lr=0.002, betas=(0.92, 0.99),

eps=1e-09)

D. P. Kingma, K. L. Ba, ADAM: A Method for Stochastic Optimization, ICLR 2015

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam

ADAM PERFORMANCE

68D. P. Kingma, K. L. Ba, ADAM: A Method for Stochastic Optimization, ICLR 2015

ADAM GRADIENT FILTER FREQUENCY RESPONSE

69

no coupling between momentum and learning rate!

SUMMARY OF OPTIMIZERS

70

gradient filtering gradient normalization grad variance filter learning rate schedule

SGD none none n/a separate

SGD w/ momentum AR1, unit input gain none n/a separate

SGD w/ Nesterov Momentum ARMA1 (1 pole, 1 zero) none n/a separate

Adagrad none yes summer
separate, but gradient norm

does alter

Adadelta none yes AR1, unit DC gain
separate, but gradient norm

does alter

RMSprop none yes AR1, unit DC gain
separate, but gradient norm

does alter

Adam
AR1, unit input gain,

transient compensation
yes

AR1, unit input gain,

transient compensation

separate, but gradient norm

does alter

Nadam (Adam w/ Nesterov)
ARMA1, transient

compensation
yes

ARMA1, transient

compensation

separate, but gradient norm

does alter

Ruder, Sebastian. "An overview of gradient descent optimization algorithms." arXiv preprint arXiv:1609.04747 (2016).

COMPARISON OF OPTIMIZERS

71

https://twitter.com/AlecRad

https://imgur.com/a/Hqolp

Visualization: https://vis.ensmallen.org/

LEARNING RATE

SCHEDULERS

LEARNING RATE SCHEDULES

73

Change (typically decrease) the learning rate as

we do more parameter updates (batches)

Recall LMS: large learning rate implies faster convergences, but

more “maladjustment error” (i.e., gradient noise)

Could also use a LR schedule to try to force the optimizer out of

a local minimum

(to go to a better local minimum, likely)

LEARNING RATE SCHEDULES IN PYTORCH

From LMS, we know that large learning rate implies faster convergences,

but more “maladjustment error” (i.e., gradient noise)

https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate

74

Rule: apply learning rate scheduling

AFTER optimizer update

COMMON LR SCHEDULES

75

Another common LR schedule is to decrease the LR at specific epochs in a

stepwise manner
𝑒. 𝑔., every 10 epochs: 𝜂 ← 0.1 ⋅ 𝜂

Exponential Decay

Linear Decay

Step Exponential Decay

Fractional Decay

0 ≤ 𝜌 ≤ 1 𝜅 > 0

𝜂𝑖 = 𝜌𝜂0

𝜂𝑖 = 𝜂0 1 −
𝑖

𝑁epochs

𝜂𝑖 = 𝜂0𝜌 𝑖/𝑃

𝜂𝑖 =
𝜂0

1 + 𝜅𝑖

EXOTIC “ANNEALING” LR SCHEDULES

76

Triangular Schedules Cosine Schedules

𝜂𝑡 = 𝜂min
𝑖 +

1

2
𝜂min

𝑖 − 𝜂max
𝑖 1 + cos

𝑇𝑐𝑢𝑟

𝑇𝑖
𝜋

cosine annealing schedule in PyTorch

https://pytorch.org/docs/stable/optim.html#torch.op

tim.lr_scheduler.CosineAnnealingLR

cosine annealing with “warm restarts”

torch.optim.lr_scheduler.CosineAnnealingWarmRestarts

https://www.jeremyjordan.me/nn-learning-rate/

Loshchilov, Ilya, and Frank Hutter. “SGDR: Stochastic gradient descent with

warm restarts." arXiv preprint arXiv:1608.03983 (2016).

L. N. Smith, “Cyclical Learning Rates for Training

Neural Networks”, arXiv:1506.01186

TOPIC OUTLINE

• Universal Approximation Theorem

◦ Why Deep?

• A Gentle Introduction to PyTorch

• Vanishing gradient and activations

• Weight initialization

• Cost functions, regularization, dropout

• Optimizers

• Batch Normalization

• Hyperparameter optimization
77

BATCH

NORMALIZATION

BATCH NORMALIZATION LAYER

79

learn the best “level" for internal activations

this normalization is done for each mini-batch

but what to do when using trained network for

inference?

During inference, replace the mini-batch data-

average mean and variance by the data-average

mean and variance over the entire dataset

commonly used and effective technique in deep CNNs

𝜸 and 𝛽 are trainable parameters

Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network

training by reducing internal covariate shift." arXiv preprint arXiv:1502.03167 (2015).

TOPIC OUTLINE

• Universal Approximation Theorem

◦ Why Deep?

• A Gentle Introduction to PyTorch

• Vanishing gradient and activations

• Weight initialization

• Cost functions, regularization, dropout

• Optimizers

• Batch Normalization

• Hyperparameter optimization
80

HYPERPARAMTER

OPTIMIZATION

THIS IS HOPELESSLY COMPLEX!?!?!

We need to search over:

1. Model Architecture

1. Number of layers

2. Layer types

3. Number of nodes in each layer

2. Loss Functions

3. Regularization Methods

1. L1, L2, L1_L2

2. Vary with layer

3. Weight vs bias

4. Optimizers

1. Type: SGD, Adam, etc.

2. Parameters

3. Learning rate schedules
82

FOLLOW HIGH-LEVEL GUIDELINES

83

Binary Classification

M-ary Classification

Regularization

Regression

Optimizer

Loss Function
Use sigmoid output activation

with Binary Cross Entropy Loss

Use softmax output activation with

Multi-Class Cross Entropy Loss

Use linear output activation

with MSE loss (L2)

Use dropout and L2 regularization

Target network size so that:
dropout rate ~ 0.2, L2-reg coefficient ~ 1e-4

Adam with defaults is a good start

optim.lr_scheduler.ReduceLROnPlateau()

or simple step LR schedulesA lot of focus on this in the literature, but designing

your dataset is more important (consider above fine

tuning in practice)

AUTOMATED NETWORK ARCHITECTURE SEARCH AND

HYPERPARAMETER OPTIMIZATION

84

Approach combines

Bayesian optimization with

grid search while targeting

a combination of

classification accuracy and

runtime complexity (CNNs)

	Slide 1: Training Deep Neural Networks II
	Slide 2: Topic Outline
	Slide 3: Cost (LOSS) Functions
	Slide 4: Cost (Loss) Functions
	Slide 5: Loss Functions — L2 for Regression
	Slide 6: Loss Functions — L1 for Regression
	Slide 7: Loss Functions — L1 vs L2
	Slide 8: Loss Functions — Multicategory Cross Entropy
	Slide 9: Loss Functions — Multicategory Cross Entropy
	Slide 10: LOSS Functions — Multicategory Cross Entropy
	Slide 11: Cost (Loss) Functions — Binary Cross Entropy
	Slide 12: Cross Entropy Loss — “From Logits”
	Slide 13: Cross Entropy Loss — “From Logits”
	Slide 14: Cross Entropy Loss — “From Logits”
	Slide 15: Hinge Loss
	Slide 16: PyTorch Loss Functions
	Slide 17: Custom Loss Functions
	Slide 18: Weight regularization
	Slide 19: Why Regularize
	Slide 20: Regularizers
	Slide 21: How To Regularize
	Slide 22: How To Regularize
	Slide 23: Regularizers — L1, L2
	Slide 24: Regularizers
	Slide 25: Regularizers in PyTorch
	Slide 26: Regularizers in PyTorch
	Slide 27: Let’s Try L2 Regularization…
	Slide 28: Let’s Try L2 Regularization…
	Slide 29: Dropout Regularization
	Slide 30: Dropout — A Different Type of Regularization
	Slide 31: Dropout
	Slide 32: Dropout — Only During Training!
	Slide 33: Dropout Example
	Slide 34: Dropout Intuition
	Slide 35: Dropout in PyTorch – just another layer
	Slide 36: Dropout with no L2 Regularization
	Slide 37: Dropout with no L2 Regularization
	Slide 38: Dropout and L2 Regularization
	Slide 39: Conclusions from Regularization Experiments
	Slide 40: Smaller Model, Less Regularization
	Slide 41: Smaller Model, Less Regularization
	Slide 42: Another Regularization Method
	Slide 43: Optimizers
	Slide 44: Optimizers
	Slide 45: LTI Filter Review
	Slide 46: Review of ARMA LTI Filters
	Slide 47: Review of ARMA LTI Filters
	Slide 48: Review of First Order LTI Filters
	Slide 49: Review of First Order LTI Filters
	Slide 50: Transient Compensation
	Slide 51: Transient Compensation - Noisy Example
	Slide 52: Deep-Learning Optimizers
	Slide 53: Summary of Optimizers
	Slide 54: Gradient Filtering
	Slide 55: General Optimizer Structure + SGD
	Slide 56: “standard” Momentum
	Slide 57: SGD with Nesterov Momentum
	Slide 58: SGD with Nesterov Momentum
	Slide 59: Standard Momentum vs Nesterov Momentum
	Slide 60: Nesterov Momentum (typical motivation)
	Slide 61: Nesterov Momentum
	Slide 62: Gradient Normalization
	Slide 63: Gradient Normalization
	Slide 64: Gradient Normalization Examples
	Slide 65: Adam (the best of all worlds?)
	Slide 66: Adam Implementation
	Slide 67: Adam in PyTorch
	Slide 68: Adam Performance
	Slide 69: Adam Gradient Filter Frequency Response
	Slide 70: Summary of Optimizers
	Slide 71: Comparison of Optimizers
	Slide 72: Learning Rate SchedulERS
	Slide 73: Learning Rate Schedules
	Slide 74: Learning Rate Schedules in PyTorch
	Slide 75: Common LR Schedules
	Slide 76: Exotic “Annealing” LR Schedules
	Slide 77: Topic Outline
	Slide 78: Batch NormaliZation
	Slide 79: Batch Normalization Layer
	Slide 80: Topic Outline
	Slide 81: Hyperparamter Optimization
	Slide 82: this Is Hopelessly Complex!?!?!
	Slide 83: Follow High-Level Guidelines
	Slide 84: Automated Network Architecture Search and Hyperparameter Optimization

