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TOPIC OUTLINE

• Universal Approximation Theorem

◦ Why Deep?

• A Gentle Introduction to PyTorch

• Vanishing gradient and activations

• Weight initialization

• Cost functions, regularization, dropout

• Optimizers

• Batch Normalization

• Hyperparameter optimization
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COST (LOSS) 

FUNCTIONS
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COST (LOSS) FUNCTIONS

some already covered, but let’s review and see how 

they translate to PyTorch

simplified notation:

last layer activation

labels

Assume 𝑀 output nodes, so these are 

𝑴 × 𝟏 vectors

𝐬

𝐚 = 𝐡(𝐬)

𝐲

4

last layer pre-activation (linear activation)



LOSS FUNCTIONS — L2 FOR REGRESSION
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average squared error

these are equivalent

PyTorch implements the mean by default, see options

(good since it is normalized for number of classes)

for BP Initialization

𝑑

𝑑𝑎
𝑦 − 𝑎 2 = 2 𝑦 − 𝑎

𝐶 = 𝐲 − 𝐚 2
2 = ෍

𝑖=1

𝑀

𝑦𝑖 − 𝑎𝑖
2

𝐶 =
1

𝑀
𝐲 − 𝐚 2

2 =
1

𝑀
෍

𝑖=1

𝑀

𝑦𝑖 − 𝑎𝑖
2

(squared) L2 norm of error

or sum of squared error



LOSS FUNCTIONS — L1 FOR REGRESSION
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average absolute error

for BP Initialization

𝐶 = 𝐲 − 𝐚 1 = ෍

𝑖=1

𝑀

𝑦𝑖 − 𝑎𝑖

𝐶 =
1

𝑀
𝐲 − 𝐚 1 =

1

𝑀
෍

𝑖=1

𝑀

𝑦𝑖 − 𝑎𝑖

𝑑

𝑑𝑎
𝑦 − 𝑎 = sgn 𝑦 − 𝑎

= ቊ
+1 𝑎 > 𝑦
−1 𝑎 < 𝑦

L1 norm of error

or sum of absolute error

these are equivalent

PyTorch implements the mean by default, see options

(good since it is normalized for number of classes)



LOSS FUNCTIONS — L1 VS L2
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L2 penalizes large error 

more than L1

L2 corresponds to 

power/energy for ECE

L1 will typically induce sparsity in 

your weights - allows a few large 

weights and many other weights are 

near 0



LOSS FUNCTIONS — MULTICATEGORY CROSS ENTROPY
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If activations are outputs of a softmax then interpret 

as probability of class 𝑖

𝐶 = − ෍

𝑖=1

𝑀

𝑦𝑖 ln 𝑎𝑖 = ෍

𝑖=1

𝑀

𝑦𝑖 ln
1

𝑎𝑖

𝛅(𝐿) = 𝐚(𝐿) − 𝐲BP gradient initialization:



LOSS FUNCTIONS — MULTICATEGORY CROSS ENTROPY

9

(np.log(0.9) + np.log(0.89) + np.log(0.94)) / 3  

= -0.094590

(averaged over batch size)

Recall, MCE is the negative log-likelihood 

(NLL) with regression error model:

𝐶 = − ෍

𝑖=1

𝑀

𝑦𝑖 ln 𝑎𝑖 𝐶 = − ln 𝑎𝑚

Class 𝑚 is true

𝑃 𝑐𝑙𝑎𝑠𝑠 = 𝑖 = 𝑎𝑖

Recall, with one-hot (hard labels)



LOSS FUNCTIONS — MULTICATEGORY CROSS ENTROPY
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PyTorch does not include soft-label

loss function

Write your own (left) 

or use nn.KLDivLoss

𝐶 = − ෍

𝑖=1

𝑀

𝑦𝑖 ln 𝑎𝑖

With soft labels we use the general form

Recall, KL-divergence is a constant offset from MCE

between the 𝒚 and 𝒂 probability mass functions



COST (LOSS) FUNCTIONS — BINARY CROSS ENTROPY
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for 𝑀 = 2 outputs — binary classification

Same as MCE with 𝑎0 = 𝑎, 𝑎1 = 1 − 𝑎

PyTorch uses this

Compare with nn.BCEWithLogitsLoss()

𝐶 = −𝑦 ln 𝑎 − 1 − 𝑦 ln 1 − 𝑎 = 𝑦 ln
1

𝑎
+ 1 − 𝑦 ln

1

1 − 𝑎

def bce(y,a):

    return -1*y*np.log(a+1e-10) -(1-y)*np.log(1-a+1e-10)

np.mean(bce(np.array([0,1,0]), np.array([0.6, 0.8, 0.1])))

0.414932



CROSS ENTROPY LOSS — “FROM LOGITS”
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numerically simpler (and more stable) to compute 

Loss(activation(𝑠)) in one step

example: binary cross entropy

loss directly from linear activation

Use this if you do not need a pmf out of your trained model

— i.e., if you will threshold the outputs of the trained model

Compare with nn.NLLLoss()

𝐶 = ln 1 + 𝑒𝑦𝑠
𝐶 = −𝑦 ln 𝑎 − 1 − 𝑦 ln 1 − 𝑎

𝑎 = 𝜎 𝑠

= 1 + 𝑒−𝑠 −1

𝐶 = 𝑦 ln 1 + 𝑒−𝑠 + 1 − 𝑦 ln 1 + 𝑒+𝑠

= ln 1 + 𝑒𝑦𝑠

𝑦 = −1 𝑦



CROSS ENTROPY LOSS — “FROM LOGITS”
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𝐶 = 𝐾 𝐬 − ෍

𝑖=1

𝑀

𝑦𝑖𝑠𝑖

𝐶 = 𝐾 𝐬 − 𝑠𝑚

Class 𝑚 is true, hard labels

𝐶 = − ෍

𝑖=1

𝑀

𝑦𝑖 ln
𝑒𝑠𝑖

σ𝑗 𝑒𝑠𝑗
 

= − ෍

𝑖=1

𝑀

𝑦𝑖 𝑠𝑖 − 𝐾 𝐬

= − ෍

𝑖=1

𝑀

𝑦𝑖𝑠𝑖 + 𝐾 𝐬

𝐾 𝐬 = ln ෍

𝑗

𝑒𝑠𝑗

loss directly from linear activation

numerically simpler (and more stable) to compute 

Loss(activation(𝑠)) in one step

example: multicategory cross entropy



CROSS ENTROPY LOSS — “FROM LOGITS”
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numerically stable approach

loss directly from linear activation:

𝐶 = max𝑗
∗ 𝑠𝑗 − ෍

𝑖=1

𝑀

𝑦𝑖𝑠𝑖

Class 𝑚 is true, hard labels

𝐶 = max𝑗
∗ 𝑠𝑗 − 𝑠𝑚

𝐾 𝐬 = ln ෍

𝑗

𝑒𝑠𝑗

= max𝑗
∗ 𝑠𝑗

max∗ 𝑥, 𝑦 = ln 𝑒𝑥 + 𝑒𝑦

= max 𝑥, 𝑦 + ln 1 + 𝑒− 𝑥−𝑦

max∗ 𝑥, 𝑦, 𝑧 = ln 𝑒𝑥 + 𝑒𝑦 + 𝑒𝑧

= max∗ max∗ 𝑥, 𝑦 , 𝑧



HINGE LOSS
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for binary classifier with target/labels in −1, +1

typically use linear output activation

torch.nn.MarginRankingLoss, margin=1 

𝐶 = max 1 − 𝑦𝑎, 0 𝑎 = 𝑠, 𝑦 ∈ −1, +1

penalize misclassification (threshold)



PYTORCH LOSS FUNCTIONS

16https://pytorch.org/docs/master/nn.html#loss-functions



CUSTOM LOSS FUNCTIONS
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PyTorch = simple custom loss functions

reimplementation of nn.MSELoss



WEIGHT 

REGULARIZATION



WHY REGULARIZE

trade-off between over and under fitting 

is the Bias-Variance trade-off

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http://www.deeplearningbook.org.

Main goal of 

Machine Learning 

is to GENERALIZE

19



REGULARIZERS
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When people say “regularizer” they usually mean a narrower definition: 

an additive term to the loss function that prevents 

weights from getting too large

regularization is anything you do in training that is aimed at 

improving generalization over accuracy — 

i.e., anything that does not optimize the cost on the training data

Main goal of Machine Learning is to 

GENERALIZE



HOW TO REGULARIZE
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Why do large weights correspond to over-fitting???

weight evolution learning curve (loss) L2 norm of weights

MacKay, Information Theory and Inference, Cambridge University Press, 2003



HOW TO REGULARIZE
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learning curve (loss)

This is an experimental observation
regularizer coefficient

weight evolution

(L2 regularization)

MacKay, Information Theory and Inference, Cambridge University Press, 2003



REGULARIZERS — L1, L2
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As we saw earlier: these can be 

viewed as being induced by an a 

priori distribution on the weights 

with MAP weight estimation

𝐶 = 𝐶no−reg + 𝜆 𝐰 2
2

𝐶 = 𝐶no−reg + 𝜆 𝐰 1

𝑤 ← 𝑤 − 𝜂
𝜕𝐶

𝜕𝑤
+ 2𝜆𝑤

𝑤 ← 𝑤 − 𝜂
𝜕𝐶

𝜕𝑤
+ 𝜆 sgn(𝑤)

L2 regularization

(weight decay)

L1 regularization

(LASSO)

L2: Gaussian prior

L1: Laplace prior



REGULARIZERS
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𝜆 ≈
Importance of small weights

Importance of minimizing training loss

𝜆 = 0 𝑤∗ ∼ arg min 𝐶no−reg 𝐰

𝜆 = ∞ 𝑤∗ ∼ 0

Typically: 10−5 ≲ 𝜆 ≲ 10−3

under-fitting

could be over-fitting, depends on 

capacity of model, dataset 

properties, and inference problem



REGULARIZERS IN PYTORCH
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https://pytorch.org/docs/stable/optim.html

Most optimizers include a weight_decay parameter 

𝐿2 penalty, default = 0

works with autograd package

Use per-parameter 

options for more control

https://www.tensorflow.org/api_docs/python/tf/keras/regularizers?hl=de


REGULARIZERS IN PYTORCH

26

But how to back-propagate with regularized loss???

autograd keeps track!



LET’S TRY L2 REGULARIZATION…
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just using regularization, we need 𝜆~1e-3 to prevent over-

fitting, but the loss is much higher (~0.45 vs 0.1)



LET’S TRY L2 REGULARIZATION…
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not totally satisfying!same trend as the loss… 

(note: this is with 80/20 train/loss split)



DROPOUT

REGULARIZATION



DROPOUT — A DIFFERENT TYPE OF REGULARIZATION

30

remove nodes in a layer with some dropout probability/rate

the random pattern is generated at the start of each mini-batch 

and held fixed during that mini-batch

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent 

neural networks from overfitting,” Journal of Machine Learning Research, vol. 15, pp. 1929–1958, 2014



DROPOUT

very effective at reducing over fitting and improving generalization

31
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent 

neural networks from overfitting,” Journal of Machine Learning Research, vol. 15, pp. 1929–1958, 2014



DROPOUT — ONLY DURING TRAINING!
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Dropout is used during training, but in inference mode, all 

nodes are present

for inference, replace the trained weights with 𝑝 ⋅ 𝑤, 

where (1 − 𝑝) is the dropout rate

(ad hoc due to nonlinearities, but it works well enough)

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent 

neural networks from overfitting,” Journal of Machine Learning Research, vol. 15, pp. 1929–1958, 2014



DROPOUT EXAMPLE

33
http://neuralnetworksanddeeplearning.com/chap4.html

What happens when we train a neural net on Neilson’s nonlinear function?

3 hidden layers, 64 nodes each, ReLU activations

no dropout 20% Dropout



DROPOUT INTUITION
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Drop Drop

Drop

Drop

Dropout can be viewed as an efficient way to do this in a single network

Ensemble methods: train multiple networks for same task and average

individual (or small groups of) nodes must do a reasonable job on he task w/o 

the deleted nodes lead to Robustness/Generalization



DROPOUT IN PYTORCH – JUST ANOTHER LAYER
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Dropout layer has no trainable parameters —it is an on/off mask 

that follows each node in the Dense layer

some layers have dropout built-in (e.g., RNNs)



DROPOUT WITH NO L2 REGULARIZATION
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with dropout of ~ 60%, we are not over-fitting and we have a loss of ~ 0.35

(better than L2 regularization in this case)



DROPOUT WITH NO L2 REGULARIZATION
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similar trend as loss

(better than L2 regularization in this case)



DROPOUT AND L2 REGULARIZATION
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best achieves test loss ~0.4, test accuracy ~ 88%



CONCLUSIONS FROM REGULARIZATION EXPERIMENTS
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A combination of dropout and L2 regularization worked best

This required a pretty-high dropout rate plus regularization 

to not over-fit…

What does this suggest to you??

Nominal Values:

dropout rate: ≈20%

L2 Regularization: [1e-5, 1e-3]Note: we will see ~94% accuracy with CNNs on this problem

Main goal of Machine Learning is to 

GENERALIZE



SMALLER MODEL, LESS REGULARIZATION
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results with 100 hidden neurons



SMALLER MODEL, LESS REGULARIZATION
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similar results with 48 hidden neurons



ANOTHER REGULARIZATION METHOD
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stop at ~10 epochs

stop training when val starts performs consistently better than train 

“early stopping”



OPTIMIZERS



OPTIMIZERS

Three common modifications:

• 1 and 2 usually associated with the “optimizer”

• learning rate schedule considered a separate parameter tuning task

Optimizers are modifications to standard 

Stochastic Gradient Descent (SGD)

1. Gradient filtering

2. Gradient normalization

3. Learning rate schedule

44



LTI FILTER 

REVIEW
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REVIEW OF ARMA LTI FILTERS
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Moving Average component

Autoregressive component

this is the canonical block 

diagram for an 𝑳th order filter



REVIEW OF ARMA LTI FILTERS
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first order ARMA filter

𝑦 𝑛 = −𝑎 1 𝑦 𝑛 − 1 + 𝑏 0 𝑥 𝑛 + 𝑏 1 𝑥[𝑛 − 1]

𝐻 𝑧 =
𝑏 0 + 𝑏 1 𝑧−1

1 + 𝑎 1 𝑧−1



REVIEW OF FIRST ORDER LTI FILTERS
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𝑦 𝑛 = −𝑎 1 𝑦 𝑛 − 1 + 𝑏 0 𝑥 𝑛

𝐻 𝑧 =
𝑏 0

1 + 𝑎 1 𝑧−1

special cases for AR1:

Unit DC-Gain AR1:

Unit input-Gain AR1:

has input-gain = (1 − 𝛼)

has DC-gain = 1/(1 − 𝛼)

Recall: as 𝛼 approaches 1, the filter gains 

memory and behaves as low-pass

𝑦 𝑛 = 𝛼𝑦 𝑛 − 1 + 1 − 𝛼 𝑥 𝑛

𝐻 𝑧 =
1 − 𝛼

1 + 𝛼𝑧−1

𝑦 𝑛 = 𝛼𝑦 𝑛 − 1 + 𝑥 𝑛

𝐻 𝑧 =
1

1 + 𝛼𝑧−1



REVIEW OF FIRST ORDER LTI FILTERS
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unit step response with 𝛼 = 0.9

𝑠 𝑛 = 1 − 𝛼𝑛+1

𝑠 𝑛 =
1 − 𝛼𝑛+1

1 − 𝛼

special cases for AR1:

Unit DC-Gain AR1:

Unit input-Gain AR1:

has input-gain = (1 − 𝛼)

has DC-gain = 1/(1 − 𝛼)

Recall: as 𝛼 approaches 1, the filter gains 

memory and behaves as low-pass

𝑦 𝑛 = 𝛼𝑦 𝑛 − 1 + 1 − 𝛼 𝑥 𝑛

𝐻 𝑧 =
1 − 𝛼

1 + 𝛼𝑧−1

𝑦 𝑛 = 𝛼𝑦 𝑛 − 1 + 𝑥 𝑛

𝐻 𝑧 =
1

1 + 𝛼𝑧−1



TRANSIENT COMPENSATION

50

transient compensation

transient compensated step response

works for any scaled 

step input!

𝑦 𝑛 = 𝛼𝑦 𝑛 − 1 + 1 − 𝛼 𝑥[𝑛]

𝐻 𝑧 =
1 − 𝛼

1 − 𝛼𝑧−1

𝑠 𝑛 = 1 − 𝛼𝑛+1

Unit DC Gain AR1: transient to reach steady state DC response

Unit input Gain AR1: pole dependent DC gain



TRANSIENT COMPENSATION - NOISY EXAMPLE
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Transient compensation

this example is a cosine in noise

(𝛼 = 0.9)

nice signal processing idea 

(comes from deep learning AFAIK)



DEEP-LEARNING 

OPTIMIZERS
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SUMMARY OF OPTIMIZERS
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gradient filtering gradient normalization grad variance filter learning rate schedule

SGD none none n/a separate

SGD w/ momentum AR1, unit input gain none n/a separate

SGD w/ Nesterov Momentum ARMA1 (1 pole, 1 zero) none n/a separate

Adagrad none yes summer
separate, but gradient norm 

does alter

Adadelta none yes AR1, unit DC gain
separate, but gradient norm 

does alter

RMSprop none yes AR1, unit DC gain
separate, but gradient norm 

does alter

Adam
AR1, unit input gain, 

transient compensation
yes

AR1, unit input gain, 

transient compensation

separate, but gradient norm 

does alter

Nadam (Adam w/ Nesterov)
ARMA1, transient 

compensation
yes

ARMA1, transient 

compensation

separate, but gradient norm 

does alter

Ruder, Sebastian. "An overview of gradient descent optimization algorithms." arXiv preprint arXiv:1609.04747 (2016).



GRADIENT 

FILTERING

54



GENERAL OPTIMIZER STRUCTURE + SGD
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parameter update:

input step/gradient (update):

𝑖 ~ indexes parameter updates

(i.e., mini-batch)𝜃 𝑖 = 𝜃 𝑖 − 1 + Δ 𝑖

∇ 𝑖 =
𝜕𝐶

𝜕𝜃[𝑖 − 1]
𝑔 𝑖 = −𝜂

𝜕𝐶

𝜕𝜃[𝑖 − 1]

SGD: SGD with momentum:

Δ 𝑖 = 𝑔[𝑖]

𝑣 𝑖 = 𝛼𝑣 𝑖 − 1 + 𝑔 𝑖

Δ 𝑖 = 𝑣[𝑖]

𝑣 is called the “velocity”

𝛼 is called “momentum”

(𝜶~𝟎. 𝟗)

Momentum: low-pass filter on gradient  —

removes high-frequency gradient noise



“STANDARD” MOMENTUM

56

note that your momentum and learning rate are coupled

choosing larger momentum effectively increases your learning rate

Momentum: low-pass filter on the gradient 

removes high-frequency gradient noise



SGD WITH NESTEROV MOMENTUM
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𝜃 𝑖 = 𝜃 𝑖 − 1 + Δ 𝑖

∇ 𝑖 =
𝜕𝐶

𝜕𝜃[𝑖 − 1]
𝑔 𝑖 = −𝜂

𝜕𝐶

𝜕𝜃[𝑖 − 1]

𝑣 𝑖 = 𝛼𝑣 𝑖 − 1 + 𝑔 𝑖

Δ 𝑖 = 1 + 𝛼 𝑣 𝑖 − 𝛼𝑣 𝑖 − 1

parameter update:

input step/gradient (update):

𝑣 is called the “velocity”

𝛼 is called “momentum”

(𝜶~𝟎. 𝟗)



SGD WITH NESTEROV MOMENTUM
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note that your momentum and learning rate are coupled

choosing larger momentum effectively increases your learning rate

Momentum: low-pass filter on the gradient 

removes high-frequency gradient noise



STANDARD MOMENTUM VS NESTEROV MOMENTUM

59

standard

Nesterov

standard momentum attenuates high frequencies 

more than Nesterov momentum



NESTEROV MOMENTUM (TYPICAL MOTIVATION)

60

Motivated as compute “preliminary” parameter update before 

updating velocity and then adjust for velocity update

what exactly is this??

… it’s the post-update value

https://jlmelville.github.io/mize/nesterov.html

typical explanation

“Bengio’s Formulation”

This is what PyTorch does! 

𝑣𝑡 = 𝜇𝑡−1𝑣𝑡−1 − 𝜖𝑡−1∇𝑓 𝜃𝑡−1 + 𝜇𝑡−1𝑣𝑡−1

𝜃𝑡 = 𝜃𝑡−1 + 𝑣𝑡

𝑣𝑡 = 𝜇𝑡−1𝑣𝑡−1 − 𝜖𝑡−1∇𝑓 𝚯𝑡−1

𝚯𝑡 = 𝚯𝑡−1 − 𝜇𝑡−1𝑣𝑡−1 + 𝜇𝑡𝑣𝑡 + 𝑣𝑡

= 𝚯𝑡−1 + 𝜇𝑡𝜇𝑡−1𝑣𝑡−1 + 1 + 𝜇𝑡 𝜖𝑡−1∇𝑓 𝚯𝑡−1

Bengio, Yoshua, Nicolas Boulanger-Lewandowski, and Razvan Pascanu. "Advances in optimizing recurrent 

networks." 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2013.

Effect: adjust momentum 

coefficient invariant to 

learning rate



NESTEROV MOMENTUM

61

“Bengio’s Formulation”

this formulation makes the pattern clear: choose any low-pass filter for 

this task — i.e., optimize a second order ARMA filter (e.g., Butterworth)

𝑣 𝑖 = 𝛼𝑣 𝑖 − 1 + 𝑔 𝑖

𝜃 𝑖 = 𝜃 𝑖 − 1 + 1 + 𝛼 𝑣 𝑖 − 𝛼𝑣 𝑖 − 1

Δ 𝑖 = 1 + 𝛼 𝑣 𝑖 − 𝛼𝑣 𝑖 − 1

= 𝑣 𝑖 + 𝛼 𝑣 𝑖 − 𝑣 𝑖 − 1
~acceleration



GRADIENT 

NORMALIZATION

62



GRADIENT NORMALIZATION

63

this is done by using a low-pass filter on the square of these quantities 

— i.e., like computing the sample second moment

parameter update:

input step/gradient (update):

Can compute the RMS value of 

𝜃 𝑖 = 𝜃 𝑖 − 1 + Δ[𝑖]

∇ 𝑖 =
𝜕𝐶

𝜕𝜃[𝑖 − 1]
𝑔 𝑖 = −𝜂

𝜕𝐶

𝜕𝜃[𝑖 − 1]

∇ 𝑖 or 𝑔 𝑖

Idea: estimate gradient RMS and normalize



GRADIENT NORMALIZATION EXAMPLES

64

Adagrad:

RMSprop:

Adadelta:



ADAM (THE BEST OF ALL WORLDS?)

65

use unit-DC gain filters for gradient filtering and for computing 

the second moment

use transient compensation to reduce

start-up effects of filters

D. P. Kingma, K. L. Ba, ADAM: A Method for Stochastic Optimization, ICLR 2015



ADAM IMPLEMENTATION

66D. P. Kingma, K. L. Ba, ADAM: A Method for Stochastic Optimization, ICLR 2015



ADAM IN PYTORCH

67

https://pytorch.org/docs/stable/optim.html#torch.optim.Adam

https://pytorch.org/docs/stable/optim.html#torch.optim.Adam

Default:

Tuned:
my_adam = optim.Adam(lr=0.002, betas=(0.92, 0.99), 

eps=1e-09)

D. P. Kingma, K. L. Ba, ADAM: A Method for Stochastic Optimization, ICLR 2015

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam


ADAM PERFORMANCE

68D. P. Kingma, K. L. Ba, ADAM: A Method for Stochastic Optimization, ICLR 2015



ADAM GRADIENT FILTER FREQUENCY RESPONSE

69

no coupling between momentum and learning rate!



SUMMARY OF OPTIMIZERS
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gradient filtering gradient normalization grad variance filter learning rate schedule

SGD none none n/a separate

SGD w/ momentum AR1, unit input gain none n/a separate

SGD w/ Nesterov Momentum ARMA1 (1 pole, 1 zero) none n/a separate

Adagrad none yes summer
separate, but gradient norm 

does alter

Adadelta none yes AR1, unit DC gain
separate, but gradient norm 

does alter

RMSprop none yes AR1, unit DC gain
separate, but gradient norm 

does alter

Adam
AR1, unit input gain, 

transient compensation
yes

AR1, unit input gain, 

transient compensation

separate, but gradient norm 

does alter

Nadam (Adam w/ Nesterov)
ARMA1, transient 

compensation
yes

ARMA1, transient 

compensation

separate, but gradient norm 

does alter

Ruder, Sebastian. "An overview of gradient descent optimization algorithms." arXiv preprint arXiv:1609.04747 (2016).



COMPARISON OF OPTIMIZERS

71

https://twitter.com/AlecRad

https://imgur.com/a/Hqolp

Visualization: https://vis.ensmallen.org/



LEARNING RATE 

SCHEDULERS



LEARNING RATE SCHEDULES

73

Change (typically decrease) the learning rate as 

we do more parameter updates (batches)

Recall LMS: large learning rate implies faster convergences, but 

more “maladjustment error” (i.e., gradient noise)

Could also use a LR schedule to try to force the optimizer out of 

a local minimum

(to go to a better local minimum, likely)



LEARNING RATE SCHEDULES IN PYTORCH

From LMS, we know that large learning rate implies faster convergences, 

but more “maladjustment error” (i.e., gradient noise)

https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate

74

Rule: apply learning rate scheduling 

AFTER optimizer update



COMMON LR SCHEDULES 

75

Another common LR schedule is to decrease the LR at specific epochs in a 

stepwise manner
𝑒. 𝑔., every 10 epochs: 𝜂 ← 0.1 ⋅ 𝜂

Exponential Decay

Linear Decay

Step Exponential Decay

Fractional Decay

0 ≤ 𝜌 ≤ 1      𝜅 > 0

𝜂𝑖 = 𝜌𝜂0

𝜂𝑖 = 𝜂0 1 −
𝑖

𝑁epochs

𝜂𝑖 = 𝜂0𝜌 𝑖/𝑃

𝜂𝑖 =
𝜂0

1 + 𝜅𝑖



EXOTIC “ANNEALING” LR SCHEDULES 

76

Triangular Schedules Cosine Schedules

𝜂𝑡 = 𝜂min
𝑖 +

1

2
𝜂min

𝑖 − 𝜂max
𝑖 1 + cos

𝑇𝑐𝑢𝑟

𝑇𝑖
𝜋

cosine annealing schedule in PyTorch

https://pytorch.org/docs/stable/optim.html#torch.op

tim.lr_scheduler.CosineAnnealingLR

cosine annealing with “warm restarts”

torch.optim.lr_scheduler.CosineAnnealingWarmRestarts

https://www.jeremyjordan.me/nn-learning-rate/

Loshchilov, Ilya, and Frank Hutter. “SGDR: Stochastic gradient descent with 

warm restarts." arXiv preprint arXiv:1608.03983 (2016).

L. N. Smith, “Cyclical Learning Rates for Training 

Neural Networks”, arXiv:1506.01186



TOPIC OUTLINE

• Universal Approximation Theorem

◦ Why Deep?

• A Gentle Introduction to PyTorch

• Vanishing gradient and activations

• Weight initialization

• Cost functions, regularization, dropout

• Optimizers

• Batch Normalization

• Hyperparameter optimization
77



BATCH 

NORMALIZATION



BATCH NORMALIZATION LAYER

79

learn the best “level" for internal activations

this normalization is done for each mini-batch

but what to do when using trained network for 

inference?

During inference, replace the mini-batch data-

average mean and variance by the data-average 

mean and variance over the entire dataset

commonly used and effective technique in deep CNNs

𝜸 and 𝛽 are trainable parameters

Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network 

training by reducing internal covariate shift." arXiv preprint arXiv:1502.03167 (2015).



TOPIC OUTLINE

• Universal Approximation Theorem

◦ Why Deep?

• A Gentle Introduction to PyTorch

• Vanishing gradient and activations

• Weight initialization

• Cost functions, regularization, dropout

• Optimizers

• Batch Normalization

• Hyperparameter optimization
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HYPERPARAMTER

OPTIMIZATION



THIS IS HOPELESSLY COMPLEX!?!?!

We need to search over:

1. Model Architecture

1. Number of layers

2. Layer types

3. Number of nodes in each layer

2. Loss Functions

3. Regularization Methods

1. L1, L2, L1_L2

2. Vary with layer

3. Weight vs bias

4. Optimizers

1. Type: SGD, Adam, etc.

2. Parameters

3. Learning rate schedules
82



FOLLOW HIGH-LEVEL GUIDELINES

83

Binary Classification

M-ary Classification

Regularization

Regression

Optimizer

Loss Function
Use sigmoid output activation 

with Binary Cross Entropy Loss

Use softmax output activation with 

Multi-Class Cross Entropy Loss

Use linear output activation 

with MSE loss (L2)

Use dropout and L2 regularization

Target network size so that:
dropout rate ~ 0.2, L2-reg coefficient ~ 1e-4

Adam with defaults is a good start

optim.lr_scheduler.ReduceLROnPlateau()

or simple step LR schedulesA lot of focus on this in the literature, but designing 

your dataset is more important (consider above fine 

tuning in practice)



AUTOMATED NETWORK ARCHITECTURE SEARCH AND 

HYPERPARAMETER OPTIMIZATION

84

Approach combines 

Bayesian optimization with 

grid search while targeting 

a combination of 

classification accuracy and 

runtime complexity (CNNs)
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