TRAINING DEEP NEURAL NETWORKS II **EE 541 – UNIT 6B** #### **TOPIC OUTLINE** - Universal Approximation Theorem - Why Deep? - A Gentle Introduction to PyTorch - Vanishing gradient and activations - Weight initialization - Cost functions, regularization, dropout - Optimizers - Batch Normalization - Hyperparameter optimization # COST (LOSS) FUNCTIONS #### **COST (LOSS) FUNCTIONS** some already covered, but let's review and see how they translate to PyTorch #### simplified notation: **s** last layer pre-activation (linear activation) a = h(s) last layer activation v labels Assume M output nodes, so these are $M \times 1$ vectors #### **LOSS FUNCTIONS — L2 FOR REGRESSION** $$C = \|\mathbf{y} - \mathbf{a}\|_{2}^{2} = \sum_{i=1}^{M} (y_{i} - a_{i})^{2}$$ (squared) L2 norm of error or sum of squared error $$C = \frac{1}{M} \|\mathbf{y} - \mathbf{a}\|_{2}^{2} = \frac{1}{M} \sum_{i=1}^{M} (y_{i} - a_{i})^{2}$$ average squared error #### these are equivalent PyTorch implements the mean by default, see options (good since it is normalized for number of classes) ``` 1 ms = nn.MSELoss() 2 output = ms(3 torch.FloatTensor([[1, 1, 1], [2, 2, 2]]), 4 torch.FloatTensor([[0, 0, 0], [3, 3, 3]])) ``` tensor(1.) #### for BP Initialization $$\frac{d}{da}(y-a)^2 = 2(y-a)$$ #### **LOSS FUNCTIONS — L1 FOR REGRESSION** $$C = \|\mathbf{y} - \mathbf{a}\|_1 = \sum_{i=1}^{M} |y_i - a_i|$$ L1 norm of error or sum of absolute error $$C = \frac{1}{M} \|\mathbf{y} - \mathbf{a}\|_1 = \frac{1}{M} \sum_{i=1}^{M} |y_i - a_i|$$ average absolute error #### these are equivalent PyTorch implements the mean by default, see options (good since it is normalized for number of classes) tensor(1.5000) #### for BP Initialization $$\frac{d}{da}|y - a| = \operatorname{sgn}(y - a)$$ $$= \begin{cases} +1 & a > y \\ -1 & a < y \end{cases}$$ #### LOSS FUNCTIONS — L1 VS L2 L2 penalizes large error more than L1 L2 corresponds to power/energy for ECE L1 will typically induce sparsity in your weights - allows a few large weights and many other weights are near 0 #### LOSS FUNCTIONS — MULTICATEGORY CROSS ENTROPY $$C = -\sum_{i=1}^{M} y_i \ln a_i = \sum_{i=1}^{M} y_i \ln \left(\frac{1}{a_i}\right)$$ BP gradient initialization: $$\mathbf{\delta}^{(L)} = \mathbf{a}^{(L)} - \mathbf{y}$$ If activations are outputs of a <u>softmax</u> then interpret as <u>probability of class i</u> #### LOSS FUNCTIONS — MULTICATEGORY CROSS ENTROPY Recall, with one-hot (hard labels) $$C = -\sum_{i=1}^{M} y_i \ln a_i \qquad \qquad C = -\ln a_m$$ Class *m* is true array(0.09458991) Recall, MCE is the negative log-likelihood (NLL) with regression error model: $$P(class = i) = a_i$$ #### LOSS FUNCTIONS — MULTICATEGORY CROSS ENTROPY With soft labels we use the general form $$C = -\sum_{i=1}^{M} y_i \ln a_i$$ ``` def categorical cross entropy(y pred, y true): return -(y true * torch.log(y pred)).sum(dim=1).mean() 5 categorical cross entropy(torch.tensor([[0.9, 0.05, 0.05], [0.05, 0.89, 0.06], 9 [0.05, 0.01, 0.94]] 10 11 torch.tensor([12 [0.7, 0.2, 0.1], 13 [0.05, 0.9, 0.05], 14 [0.3, 0.3, 0.4]] 15 16) ``` PyTorch does not include soft-label loss function Write your own (left) or use nn.KLDivLoss tensor(1.2243) Recall, KL-divergence is a constant offset from MCE between the y and a probability mass functions #### COST (LOSS) FUNCTIONS — BINARY CROSS ENTROPY for M = 2 outputs — binary classification $$C = -y\ln(a) - (1-y)\ln(1-a) = y\ln\left(\frac{1}{a}\right) + (1-y)\ln\left(\frac{1}{1-a}\right)$$ Same as MCE with $a_0 = a$, $a_1 = 1 - a$ #### PyTorch uses this ``` 1 nn.BCELoss()(2 torch.tensor([[.6, .8, .1]]), 3 torch.tensor([[0., 1., 0.]]) 4) ``` tensor(0.4149) ``` def bce(y,a): return -1*y*np.log(a+1e-10) -(1-y)*np.log(1-a+1e-10) np.mean(bce(np.array([0,1,0]), np.array([0.6, 0.8, 0.1]))) 0.414932 ``` Compare with nn.BCEWithLogitsLoss() #### **CROSS ENTROPY LOSS — "FROM LOGITS"** numerically simpler (and $\underline{more stable}$) to compute Loss(activation(s)) in one step #### example: binary cross entropy $$C = -y \ln(a) - (1 - y) \ln(1 - a)$$ $$a = \sigma(s)$$ $$= [1 + e^{-s}]^{-1}$$ $$C = y \ln(1 + e^{-s}) + (1 - y) \ln(1 + e^{+s})$$ $$= \ln(1 + e^{\overline{y}s})$$ $$\overline{y} = (-1)^y$$ $$C = \ln(1 + e^{\overline{y}s})$$ loss directly from linear activation Use this if you do not need a pmf out of your trained model -i.e., if you will threshold the outputs of the trained model Compare with nn.NLLLoss() #### **CROSS ENTROPY LOSS — "FROM LOGITS"** numerically simpler (and more stable) to compute Loss(activation(s)) in one step example: multicategory cross entropy $$C = -\sum_{i=1}^{M} y_i \ln \left[\frac{e^{s_i}}{\sum_{j} e^{s_j}} \right]$$ $$= -\sum_{i=1}^{M} y_i [s_i - K(\mathbf{s})]$$ $$= -\sum_{i=1}^{M} y_i s_i + K(\mathbf{s})$$ $$K(\mathbf{s}) = \ln \left(\sum_{i=1}^{M} e^{s_i} \right)$$ $$C = K(\mathbf{s}) - \sum_{i=1}^{M} y_i s_i$$ loss directly from linear activation $$C = K(\mathbf{s}) - s_m$$ Class m is true, hard labels #### CROSS ENTROPY LOSS — "FROM LOGITS" $$K(\mathbf{s}) = \ln\left(\sum_{j} e^{s_{j}}\right)$$ $$= \max_{j}^{*} s_{j}$$ $$\max^{*}(x, y) = \ln(e^{x} + e^{y})$$ $$= \max(x, y) + \ln(1 + e^{-|x-y|})$$ $$\max^{*}(x, y, z) = \ln(e^{x} + e^{y} + e^{z})$$ $$= \max^{*}(\max^{*}(x, y), z)$$ numerically stable approach loss directly from linear activation: $$C = \max_{j}^{*} s_{j} - \sum_{i=1}^{M} y_{i} s_{i}$$ $$C = \max_{j}^{*} s_{j} - s_{m}$$ Class m is true, hard labels #### HINGE LOSS for binary classifier with target/labels in $\{-1, +1\}$ penalize misclassification (threshold) $$C = \max(1 - ya, 0)$$ $$a = s, y \in \{-1, +1\}$$ typically use linear output activation #### **PYTORCH LOSS FUNCTIONS** | nn.L1Loss | Creates a criterion that measures the mean absolute error (MAE) between each element in the input $\mathbf X$ and target y . | |------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------| | nn.MSELoss | Creates a criterion that measures the mean squared error (squared L2 norm) between each element in the input \boldsymbol{x} and target \boldsymbol{y} . | | nn.CrossEntropyLoss | This criterion combines nn.LogSoftmax() and nn.NLLLoss() in one single class. | | nn.CTCLoss | The Connectionist Temporal Classification loss. | | nn.NLLLoss | The negative log likelihood loss. | | nn.PoissonNLLLoss | Negative log likelihood loss with Poisson distribution of target. | | nn.KLDivLoss | The Kullback-Leibler divergence loss measure | | nn.BCELoss | Creates a criterion that measures the Binary Cross Entropy between the target and the output: | | nn.BCEWithLogitsLoss | This loss combines a <i>Sigmoid</i> layer and the <i>BCELoss</i> in one single class. | | nn.MaxginRankingLoss s/master/nn.html#loss-functions | Creates a criterion that measures the loss given inputs $x1$, $x2$, two 1D mini-batch $\it Tensors$, and a label 1D mini-batch tensor y (containing 1 or -1). | https://pytorch.org/docs/master/nn.html#loss-functions 16 #### **CUSTOM LOSS FUNCTIONS** #### PyTorch = simple custom loss functions ``` def my_loss(output, target): loss = torch.mean((output - target)**2) return loss model = nn.Linear(2, 2) x = torch.randn(1, 2) target = torch.randn(1, 2) output = model(x) loss = my_loss(output, target) loss.backward() print(model.weight.grad) ``` reimplementation of nn.MSELoss ### WEIGHT REGULARIZATION #### WHY REGULARIZE trade-off between over and under fitting is the Bias-Variance trade-off ### Main goal of Machine Learning is to GENERALIZE #### REGULARIZERS ### Main goal of Machine Learning is to **GENERALIZE** regularization is anything you do in training that is aimed at inproving generalization over accuracy— i.e., anything that does not optimize the cost on the training data When people say "regularizer" they usually mean a narrower definition: an additive term to the loss function that prevents weights from getting too large #### **HOW TO REGULARIZE** #### Why do large weights correspond to over-fitting??? weight evolution learning curve (loss) L2 norm of weights #### **HOW TO REGULARIZE** #### This is an experimental observation #### regularizer coefficient weight evolution (L2 regularization) learning curve (loss) #### REGULARIZERS — L1, L2 L2 regularization (weight decay) $$C = C_{\text{no-reg}} + \lambda ||\mathbf{w}||_2^2$$ $$\longrightarrow \qquad w \leftarrow w - \eta \left(\frac{\partial C}{\partial w} + 2\lambda w \right)$$ L1 regularization (*LASSO*) $$C = C_{\text{no-reg}} + \lambda \; \|\mathbf{w}\|_1$$ $$\longrightarrow w \leftarrow w - \eta \left(\frac{\partial C}{\partial w} + \lambda \operatorname{sgn}(w) \right)$$ As we saw earlier: these can be viewed as being induced by an *a* priori distribution on the weights with MAP weight estimation L2: Gaussian prior L1: Laplace prior #### **REGULARIZERS** $$\lambda \approx \frac{\text{Importance of small weights}}{\text{Importance of minimizing training loss}}$$ $$\lambda = 0$$ $w^* \sim \arg\min C_{\text{no-reg}}(\mathbf{w})$ could be over-fitting, depends on capacity of model, dataset properties, and inference problem $$\lambda = \infty$$ $w^* \sim 0$ under-fitting Typically: $$10^{-5} \lesssim \lambda \lesssim 10^{-3}$$ #### REGULARIZERS IN PYTORCH https://pytorch.org/docs/stable/optim.html ``` torch.optim.SGD(params, 1r=<required parameter>, momentum=0, dampening=0, weight_decay=0, nesterov=False) Implements stochastic gradient descent (optionally with momentum). Nesterov momentum is based on the formula from On the importance of initialization and momentum in deep learning. Parameters • params (iterable) – iterable of parameters to optimize or dicts defining parameter groups • Ir (float) – learning rate • momentum (float, optional) – momentum factor (default: 0) • weight_decay (float, optional) – weight decay (L2 penalty) (default: 0) • dampening (float, optional) – dampening for momentum (default: 0) • nesterov (bool, optional) – enables Nesterov momentum (default: False) ``` Use per-parameter options for more control Most optimizers include a weight_decay parameter L^2 penalty, default = 0 works with autograd package #### REGULARIZERS IN PYTORCH #### But how to back-propagate with regularized loss??? ``` 1 l1_regularization, l2_regularization = torch.tensor(0), torch.tensor(0) 2 optimizer.zero_grad() 4 outputs = model(inputs) 5 cross_entropy_loss = F.cross_entropy(outputs, targets) 6 for param in model.parameters(): 8 l1_regularization += torch.norm(param, 1) 9 l2_regularization += torch.norm(param, 2)**2 10 loss = cross_entropy_loss + l1_regularization + l2_regularization 11 loss.backward() 12 optimizer.step() ``` #### autograd keeps track! ``` ## x in range [0, 1] x = torch.rand(3,2,requires_grad=True) loss = torch.sum(torch.abs(x)) loss.backward() ## gradient should be all one x.grad ``` ``` tensor([[1., 1.], [1., 1.], [1., 1.]] ``` #### **LET'S TRY L2 REGULARIZATION...** just using regularization, we need $\lambda \sim 1e-3$ to prevent overfitting, but the loss is much higher (~ 0.45 vs 0.1) #### **LET'S TRY L2 REGULARIZATION...** same trend as the loss... (note: this is with 80/20 train/loss split) not totally satisfying! ### DROPOUT REGULARIZATION #### **DROPOUT — A DIFFERENT TYPE OF REGULARIZATION** remove nodes in a layer with some dropout probability/rate the **random pattern** is generated at the start of each mini-batch and held fixed during that mini-batch (a) Standard Neural Net (b) After applying dropout. #### **DROPOUT** #### very effective at reducing over fitting and improving generalization Figure 4: Test error for different architectures with and without dropout. The networks have 2 to 4 hidden layers each with 1024 to 2048 units. #### DROPOUT — ONLY DURING TRAINING! Dropout is **used during training**, but in inference mode, all nodes are present for inference, replace the trained weights with $p \cdot w$, where (1-p) is the dropout rate (ad hoc due to nonlinearities, but it works well enough) #### **DROPOUT EXAMPLE** What happens when we train a neural net on Neilson's nonlinear function? ``` def neilson_example(x): return 0.2 + 0.4 * x**2 + 0.3 * x * np.sin(15 * x) + 0.05 * np.cos(50 * x) ``` 3 hidden layers, 64 nodes each, ReLU activations #### **DROPOUT INTUITION** Ensemble methods: train multiple networks for same task and average Dropout can be viewed as an efficient way to do this in a single network individual (or small groups of) nodes must do a reasonable job on he task w/o the deleted nodes lead to Robustness/Generalization School of Engineering #### **DROPOUT IN PYTORCH – JUST ANOTHER LAYER** Dropout layer has <u>no trainable parameters</u> —it is an on/off *mask* that follows each node in the Dense layer some layers have dropout built-in (e.g., RNNs) #### **DROPOUT WITH NO L2 REGULARIZATION** with dropout of $\sim 60\%$, we are not over-fitting and we have a loss of ~ 0.35 (better than L2 regularization in this case) # **DROPOUT WITH NO L2 REGULARIZATION** similar trend as loss (better than L2 regularization in this case) School of Engineering ### **DROPOUT AND L2 REGULARIZATION** best achieves test loss ~0.4, test accuracy ~ 88% #### CONCLUSIONS FROM REGULARIZATION EXPERIMENTS # Main goal of Machine Learning is to **GENERALIZE** A combination of dropout and L2 regularization worked best This required a pretty-high dropout rate plus regularization to not over-fit... Note: we will see ~94% accuracy with CNNs on this problem #### **Nominal Values:** dropout rate: ≈20% L2 Regularization: [1e-5, 1e-3] What does this suggest to you?? # **SMALLER MODEL, LESS REGULARIZATION** results with 100 hidden neurons # **SMALLER MODEL, LESS REGULARIZATION** similar results with 48 hidden neurons #### **ANOTHER REGULARIZATION METHOD** "early stopping" stop training when val starts performs consistently better than train stop at ~10 epochs # OPTIMIZERS #### **OPTIMIZERS** # Optimizers are **modifications** to standard Stochastic Gradient Descent (SGD) #### Three common modifications: - 1. Gradient filtering - 2. Gradient normalization - 3. Learning rate schedule - 1 and 2 usually associated with the "optimizer" - learning rate schedule considered a separate parameter tuning task # LTIFILTER REVIEW #### **REVIEW OF ARMA LTI FILTERS** $$v[n] = x[n] - (a[1]v[n-1] + a[2]v[n-2] + \cdots + a[L]v[n-L])$$ $$y[n] = b[0]v[n] + b[1]v[n-1] + b[2]v[n-2] + \cdots + b[L]v[n-L]$$ $$state[n] = (v[n-1], v[n-1], \dots v[n-L])$$ implements this difference equation: $$y[n] = \sum_{i=0}^{L} b[i]x[n-i] - \sum_{i=1}^{L} a[i]y[n-i]$$ Frequency response: $$H(z) = \frac{b[0] + b[1]z^{-1} + b[2]z^{-2} + b[L]z^{-L}}{1 + a[1]z^{-1} + a[2]z^{-2} + a[L]z^{-L}} \qquad z = e^{j2\pi\nu}$$ this is the canonical block diagram for an *L*th order filter #### **REVIEW OF ARMA LTI FILTERS** ### first order ARMA filter $$y[n] = -a[1]y[n-1] + b[0]x[n] + b[1]x[n-1]$$ $$H(z) = \frac{b[0] + b[1]z^{-1}}{1 + a[1]z^{-1}}$$ ## REVIEW OF FIRST ORDER LTI FILTERS # y[n] #### special cases for AR1: Unit DC-Gain AR1: $v[n] = \alpha v[n-1] + (1-\alpha)x[n]$ $$H(z) = \frac{(1-\alpha)}{1+\alpha z^{-1}}$$ has input-gain = $(1 - \alpha)$ $y[n] = \alpha y[n-1] + x[n]$ Unit input-Gain AR1: $$H(z) = \frac{1}{1 + \alpha z^{-1}}$$ has DC-gain = $1/(1-\alpha)$ $$y[n] = -a[1]y[n-1] + b[0]x[n]$$ $$H(z) = \frac{b[0]}{1 + a[1]z^{-1}}$$ *Recall*: as α approaches 1, the filter gains memory and behaves as low-pass #### **REVIEW OF FIRST ORDER LTI FILTERS** #### unit step response with $\alpha = 0.9$ AR1 Unit Input Gain 10 30 time (n) ## special cases for AR1: Unit DC-Gain AR1: $$y[n] = \alpha y[n-1] + (1-\alpha)x[n]$$ $$s[n] = 1 - \alpha^{n+1}$$ $$H(z) = \frac{(1-\alpha)}{1+\alpha z^{-1}}$$ has input-gain = $(1 - \alpha)$ Unit input-Gain AR1: $$y[n] = \alpha y[n-1] + x[n]$$ $$s[n] = \frac{1 - \alpha^{n+1}}{1 - \alpha}$$ $$H(z) = \frac{1}{1 + \alpha z^{-1}}$$ has DC-gain = $1/(1-\alpha)$ *Recall*: as α approaches 1, the filter gains memory and behaves as low-pass #### TRANSIENT COMPENSATION Unit DC Gain AR1: transient to reach steady state DC response Unit input Gain AR1: pole dependent DC gain $$y[n] = \alpha y[n-1] + (1-\alpha)x[n]$$ $$H(z) = \frac{(1-\alpha)}{1-\alpha z^{-1}}$$ $$s[n] = 1 - \alpha^{n+1}$$ #### transient compensation #### transient compensated step response works for any scaled step input! #### TRANSIENT COMPENSATION - NOISY EXAMPLE # DEP-LEARNING OPTIMIZERS # **SUMMARY OF OPTIMIZERS** | | gradient filtering | gradient normalization | grad variance filter | learning rate schedule | |--------------------------|----------------------------------------------|------------------------|----------------------------------------------|----------------------------------------| | SGD | none | none | n/a | separate | | SGD w/ momentum | AR1, unit input gain | none | n/a | separate | | SGD w/ Nesterov Momentum | ARMA1 (1 pole, 1 zero) | none | n/a | separate | | Adagrad | none | yes | summer | separate, but gradient norm does alter | | Adadelta | none | yes | AR1, unit DC gain | separate, but gradient norm does alter | | RMSprop | none | yes | AR1, unit DC gain | separate, but gradient norm does alter | | Adam | AR1, unit input gain, transient compensation | yes | AR1, unit input gain, transient compensation | separate, but gradient norm does alter | | Nadam (Adam w/ Nesterov) | ARMA1, transient compensation | yes | ARMA1, transient compensation | separate, but gradient norm does alter | # GRADIENT FILTERING #### GENERAL OPTIMIZER STRUCTURE + SGD parameter update: $$\theta[i] = \theta[i-1] + \Delta[i]$$ *i* ~ indexes parameter updates (i.e., mini-batch) input step/gradient (update): $$\nabla[i] = \frac{\partial C}{\partial \theta[i-1]}$$ $$g[i] = -\eta \frac{\partial C}{\partial \theta[i-1]}$$ SGD: $$\Delta[i] = g[i]$$ #### SGD with momentum: $$v[i] = \alpha v[i-1] + g[i]$$ v is called the "velocity" $\Delta[i] = v[i]$ α is called "momentum" α is called "momentum" $(\alpha \sim 0.9)$ $$g[i] \longrightarrow \begin{array}{c} 1 \\ 1 - \alpha z^{-1} \end{array}$$ pole at α **Momentum:** low-pass filter on gradient removes high-frequency gradient noise ## "STANDARD" MOMENTUM **Momentum:** low-pass filter on the gradient removes high-frequency gradient noise note that your momentum and learning rate are coupled choosing larger momentum effectively increases your learning rate ### SGD WITH NESTEROV MOMENTUM parameter update: $$\theta[i] = \theta[i-1] + \Delta[i]$$ input step/gradient (update): $$\nabla[i] = \frac{\partial C}{\partial \theta[i-1]}$$ $$g[i] = -\eta \frac{\partial C}{\partial \theta[i-1]}$$ $$v[i] = \alpha v[i-1] + g[i]$$ v is called the "velocity" $$\Delta[i] = (1 + \alpha)v[i] - \alpha v[i - 1]$$ α is called "momentum" $(\alpha \sim 0.9)$ $$g[i] \qquad \underbrace{\frac{(1+\alpha)-\alpha z^{-1}}{1-\alpha z^{-1}}} \qquad \Delta[i]$$ $$\text{pole at } \alpha$$ $$\text{zero at } (1+\alpha)/\alpha$$ ### SGD WITH NESTEROV MOMENTUM **Momentum:** low-pass filter on the gradient removes high-frequency gradient noise note that your momentum and learning rate are coupled choosing larger momentum effectively increases your learning rate ## STANDARD MOMENTUM VS NESTEROV MOMENTUM #### **Nesterov** standard momentum attenuates high frequencies more than Nesterov momentum # **NESTEROV MOMENTUM (TYPICAL MOTIVATION)** Motivated as compute "preliminary" parameter update before updating velocity and then adjust for velocity update $$v_{t} = \mu_{t-1}v_{t-1} - \boxed{\epsilon_{t-1}\nabla f(\theta_{t-1} + \mu_{t-1}v_{t-1})}$$ $$\theta_t = \theta_{t-1} + \nu_t$$ what exactly is this?? ... it's the *post-update* value #### typical explanation "Bengio's Formulation" $$v_t = \mu_{t-1}v_{t-1} - \epsilon_{t-1}\nabla f(\mathbf{\Theta}_{t-1})$$ $$\mathbf{\Theta}_{t} = \mathbf{\Theta}_{t-1} - \mu_{t-1} v_{t-1} + \mu_{t} v_{t} + v_{t}$$ $$= \mathbf{\Theta}_{t-1} + \mu_{t} \mu_{t-1} v_{t-1} + (1 + \mu_{t}) \epsilon_{t-1} \nabla f(\mathbf{\Theta}_{t-1})$$ This is what PyTorch does! **Effect:** adjust momentum coefficient invariant to learning rate Bengio, Yoshua, Nicolas Boulanger-Lewandowski, and Razvan Pascanu. "Advances in optimizing recurrent networks." 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2013. #### **NESTEROV MOMENTUM** "Bengio's Formulation" $$v[i] = \alpha v[i-1] + g[i]$$ $$\theta[i] = \theta[i-1] + (1+\alpha)v[i] - \alpha v[i-1]$$ $$\Delta[i] = (1+\alpha)v[i] - \alpha v[i-1]$$ $$= v[i] + \alpha \underbrace{(v[i] - v[i-1])}_{\sim \text{acceleration}} \qquad \underbrace{g[i]}_{1-\alpha z^{-1}} \qquad \underbrace{\Delta[i]}_{1-\alpha z^{-1}}$$ $$\text{pole at } \alpha$$ $$\text{zero at } (1+\alpha)/\alpha$$ this formulation makes the pattern clear: choose any low-pass filter for this task -i.e., optimize a second order ARMA filter (e.g., Butterworth) # GRADIENT NORMALIZATION #### GRADIENT NORMALIZATION Idea: estimate gradient RMS and normalize parameter update: $$\theta[i] = \theta[i-1] + \Delta[i]$$ $$\nabla[i] = \frac{\partial C}{\partial \theta[i-1]}$$ $$\nabla[i] = \frac{\partial C}{\partial \theta[i-1]} \qquad g[i] = -\eta \frac{\partial C}{\partial \theta[i-1]}$$ $$\nabla[i]$$ or this is done by using a low-pass filter on the square of these quantities -i.e., like computing the sample second moment #### **GRADIENT NORMALIZATION EXAMPLES** Adagrad: RMSprop: Adadelta: # **ADAM (THE BEST OF ALL WORLDS?)** use unit-DC gain filters for gradient filtering **and** for computing the second moment use transient compensation to reduce start-up effects of filters #### **ADAM IMPLEMENTATION** Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t. ``` Require: \alpha: Stepsize Require: \beta_1, \beta_2 \in [0, 1): Exponential decay rates for the moment estimates Require: f(\theta): Stochastic objective function with parameters \theta Require: \theta_0: Initial parameter vector m_0 \leftarrow 0 (Initialize 1st moment vector) v_0 \leftarrow 0 (Initialize 2nd moment vector) t \leftarrow 0 (Initialize timestep) while \theta_t not converged do t \leftarrow t + 1 g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t) m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t (Update biased first moment estimate) v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 (Update biased second raw moment estimate) \widehat{m}_t \leftarrow m_t/(1-\beta_1^t) (Compute bias-corrected first moment estimate) \hat{v}_t \leftarrow v_t/(1-\beta_2^t) (Compute bias-corrected second raw moment estimate) \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon) (Update parameters) end while return \theta_t (Resulting parameters) ``` #### **ADAM IN PYTORCH** https://pytorch.org/docs/stable/optim.html#torch.optim.Adam #### **Default:** Tuned: $my_{adam} = optim.Adam(lr=0.002, betas=(0.92, 0.99), eps=1e-09)$ # **ADAM PERFORMANCE** -5 0.0 0.2 ν (cycles/sample) 0.1 # **ADAM GRADIENT FILTER FREQUENCY RESPONSE** 0.5 0.4 0.3 # **SUMMARY OF OPTIMIZERS** | | gradient filtering | gradient normalization | grad variance filter | learning rate schedule | |--------------------------|----------------------------------------------|------------------------|-------------------------------------------------|----------------------------------------| | SGD | none | none | n/a | separate | | SGD w/ momentum | AR1, unit input gain | none | n/a | separate | | SGD w/ Nesterov Momentum | ARMA1 (1 pole, 1 zero) | none | n/a | separate | | Adagrad | none | yes | summer | separate, but gradient norm does alter | | Adadelta | none | yes | AR1, unit DC gain | separate, but gradient norm does alter | | RMSprop | none | yes | AR1, unit DC gain | separate, but gradient norm does alter | | Adam | AR1, unit input gain, transient compensation | yes | AR1, unit input gain,
transient compensation | separate, but gradient norm does alter | | Nadam (Adam w/ Nesterov) | ARMA1, transient compensation | yes | ARMA1, transient compensation | separate, but gradient norm does alter | # **COMPARISON OF OPTIMIZERS** https://twitter.com/AlecRad https://imgur.com/a/Hqolp Visualization: https://vis.ensmallen.org/ # LEARNING RATE SCHEDULERS ### LEARNING RATE SCHEDULES Change (typically decrease) the learning rate as we do more parameter updates (batches) Recall LMS: large learning rate implies faster convergences, but more "maladjustment error" (i.e., gradient noise) Could also use a LR schedule to try to force the optimizer out of a local minimum (to go to a better local minimum, likely) ### LEARNING RATE SCHEDULES IN PYTORCH https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate ``` learning_rate = 0.1 optimizer = torch.optim.SGD(model.parameters(), lr=learning rate, momentum=0.9, nesterov=True) # step size: at how many multiples of epoch you decay # step size = 1, after every 1 epoch, new lr = lr*gamma # step size = 2, after every 2 epoch, new lr = lr*gamma # gamma = decaying factor scheduler = StepLR(optimizer, step size=1, gamma=0.1) 11 12 | for epoch in range(num epochs): [...] 13 # Decay Learning Rate 14 15 scheduler.step() # Print Learning Rate 16 print('Epoch:', epoch,'LR:', scheduler.get_lr()) 17 ``` Rule: apply learning rate **scheduling AFTER optimizer** update ``` >>> scheduler = ... >>> for epoch in range(100): >>> train(...) >>> validate(...) >>> scheduler.step() ``` From LMS, we know that large learning rate implies faster convergences, but more "maladjustment error" (i.e., gradient noise) ### **COMMON LR SCHEDULES** $$\eta_i = \rho \eta_0$$ **Exponential Decay** $$\eta_i = \eta_0 \left(1 - \frac{i}{N_{\text{epochs}}} \right)$$ **Linear Decay** $$\eta_i = \eta_0 \rho^{\lfloor i/P \rfloor}$$ Step Exponential Decay $$\eta_i = \frac{\eta_0}{1 + \kappa i}$$ Fractional Decay Another common LR schedule is to decrease the LR at specific epochs in a stepwise manner e. g., every 10 epochs: $\eta \leftarrow 0.1 \cdot \eta$ ### **EXOTIC "ANNEALING" LR SCHEDULES** ### Triangular Schedules Triangular schedule with fixed decay Triangular schedule with exponential decay L. N. Smith, "Cyclical Learning Rates for Training Neural Networks", arXiv:1506.01186 #### Cosine Schedules $$\eta_t = \eta_{\min}^i + \frac{1}{2} \left(\eta_{\min}^i - \eta_{\max}^i \right) \left(1 + \cos \left(\frac{T_{cur}}{T_i} \pi \right) \right)$$ Loshchilov, Ilya, and Frank Hutter. "SGDR: Stochastic gradient descent with warm restarts." arXiv preprint arXiv:1608.03983 (2016). ### cosine annealing schedule in PyTorch https://pytorch.org/docs/stable/optim.html#torch.optim.lr_scheduler.CosineAnnealingLR ### cosine annealing with "warm restarts" $torch. optim. lr_scheduler. Cosine Annealing Warm Restarts$ ## USC Viterbi School of Engineering ### **TOPIC OUTLINE** - Universal Approximation Theorem - Why Deep? - A Gentle Introduction to PyTorch - Vanishing gradient and activations - Weight initialization - Cost functions, regularization, dropout - Optimizers - Batch Normalization - Hyperparameter optimization # BATCH NORMALIZATION ### **BATCH NORMALIZATION LAYER** ### learn the best "level" for internal activations **Input:** Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$ // mini-batch mean $$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$ // mini-batch variance $$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$ // normalize $$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$$ // scale and shift **Algorithm 1:** Batch Normalizing Transform, applied to activation x over a mini-batch. γ and β are trainable parameters this normalization is done for each mini-batch but what to do when using trained network for inference? During inference, replace the mini-batch dataaverage mean and variance by the data-average mean and variance over the entire dataset 11: In $$N_{\mathrm{BN}}^{\mathrm{inf}}$$, replace the transform $y = \mathrm{BN}_{\gamma,\beta}(x)$ with $y = \frac{\gamma}{\sqrt{\mathrm{Var}[x] + \epsilon}} \cdot x + \left(\beta - \frac{\gamma \, \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}}\right)$ commonly used and effective technique in deep CNNs ## USC Viterbi School of Engineering ### **TOPIC OUTLINE** - Universal Approximation Theorem - Why Deep? - A Gentle Introduction to PyTorch - Vanishing gradient and activations - Weight initialization - Cost functions, regularization, dropout - Optimizers - Batch Normalization - Hyperparameter optimization # HYPERPARAMTER OPTIMIZATION ### THIS IS HOPELESSLY COMPLEX!?!?! ### We need to search over: - 1. Model Architecture - 1. Number of layers - 2. Layer types - 3. Number of nodes in each layer - 2. Loss Functions - 3. Regularization Methods - 1. L1, L2, L1_L2 - 2. Vary with layer - 3. Weight vs bias - 4. Optimizers - 1. Type: SGD, Adam, etc. - 2. Parameters - 3. Learning rate schedules tuning in practice) ### **FOLLOW HIGH-LEVEL GUIDELINES** 83 # AUTOMATED NETWORK ARCHITECTURE SEARCH AND HYPERPARAMETER OPTIMIZATION Approach combines Bayesian optimization with grid search while targeting a combination of classification accuracy and runtime complexity (CNNs)