USC Viterbi

School of Engineering

TRAINING DEEP

NEURAL NETWORKS II

EE 541 — UNIT 6B

DR. BRANDON FRANZKE

Spring 2025

USCViterbi

School of Engineering

TOPIC OUTLINE

* Cost functions, regularization, dropout
* Optimizers
« Batch Normalization

* Hyperparameter optimization

USC Viterbi
School of Engineering

COST (LOSS)
FUNCTIONS

USCViterbi

School of Engineering

COST (LOSS) FUNCTIONS

some already covered, but let’s review and see how
they translate to PyTorch

simplified notation:

S last layer pre-activation (linear activation)
a = h(s) last layer activation
y labels

Assume M output nodes, so these are
M X 1 vectors

USCViterbi

School of Engineering

LOSS FUNCTIONS — L2 FOR REGRESSION

M
C=l|y-al?= Z(yi — a;)? (squared) L2 norm of error
— or sum of squared error

M
1 1
C=-lly- all; = MZ(% — a;)? average squared error
i=1

these are equivalent o
for BP Initialization

PyTorch implements the mean by default, see options
(good since it is normalized for number of classes)

d
— (- =2(-a)

1 ms = nn.M5ELoss()
2 output = ms(

3 torch.FloatTensor([[1, 1, 1], [2, 2, 2]]),
4 torch.FloatTensor([[&, @&, 8], [3, 2, 311}

tensor(l.)

USCViterbi

School of Engineering

LOSS FUNCTIONS — L1 FOR REGRESSION

M
c=ly-all =) Iy —a
i=1

M
1 1
C = M”Y‘ all, = MZD&' — a;
l:

these are equivalent

PyTorch implements the mean by default, see options
(good since it is normalized for number of classes)

1 ms = nn.L1loss()
2 output = ms(

3 torch.tensor([[1., 1., 1.], [1., 1., 1.]1},
4 torch.tensor([[8., &., &.], [3-, 3., 3-11))

tensor(l.5888)

L1 norm of error

or sum of absolute error

average absolute error

for BP Initialization

4 1y—a
day a

-1

sgn(y — a)

+1 a>y
-1 a<y

USCViterbi

School of Engineering

LOSS FUNCTIONS —L1VS L2

Simple Comparison of L1 and L2 Loss

— Ix

od — X2
-3 -2 -1 0 1 2 3
L2 penalizes large error L1 will typically induce sparsity in
more than L1 your weights - allows a few large
weights and many other weights are
L2 corresponds to near 0

power/energy for ECE

USCViterbi

School of Engineering

LOSS FUNCTIONS — MULTICATEGORY CROSS ENTROPY

M M 1

C = —Zyilnai = Zyiln(—>
. ; a;
1=1 1=1

BP gradient initialization: 8§ =) —y

If activations are outputs of a softmax then interpret

as probability of class i

USCViterbi

School of Engineering

LOSS FUNCTIONS — MULTICATEGORY CROSS ENTROPY

Recall, with one-hot (hard labels)

M
C=-— E yilna; > C=-Ina,
=1
5 loss_func = nn.CrossEntropylLoss()
6 loss_func
%orcthensor([(np.log(0.9) + np.log(0.89) + np.log(0.94)) / 3

[np.log(e.2)}, np.log(@.85), np.log(@.85)], _
[np.log(e.85), np.log(®.89), np.log(@.86)], = -0.094590
[np.log(e.85), np.log(@.81), np.log(@.24)]]

)

=b nu;ﬁ;;;"te““'"“a'“]) (averaged over batch size)

array(@.894585891)

Recall, MCE is the negative log-likelihood
(NLL) with regression error model:

P(class =i) = q; 9

USCViterbi

School of Engineering

LOSS FUNCTIONS — MULTICATEGORY CROSS ENTROPY

With soft labels we use the general form

M
C=-— E y; Inaq;
i=1
1 def categorical _cross_entropy(y_pred, y_true):

return -(y_true * torch.log(y_pred)).sum(dim=1).mean() PyTorCh doeS not 'include Soft-label

5 categorical cross_entropy(

6 torch.tensor([lOSS funCt'lon
7 [6.9, ©.85, 8.85],
[6.85, ©.80, 8.86],
[0.05, 0.01, 8.94]]

)

torch.tensor([

(6.7, 6.2, .11, Write your own (left)

13 [e.e5, 8.9, @.85],

14 [8.2, 8.3, ©.4]] .

15) or use nn.KLDi1vLoss
16 |)

tensor(1.2243)

Recall, KL-divergence is a constant offset from MCE
between the y and a probability mass functions 0

USCViterbi

School of Engineering

COST (LOSS) FUNCTIONS — BINARY CROSS ENTROPY

for M = 2 outputs — binary classification

1 1
C=—-yln(a)—-(1—y)In(1—a) = yln(5> +(1—-y) ln(1 —a)
Same as MCE withay =a,a;, =1—a

PyTorch uses this

1 nn.BCELoss({)(def bce(y,a):
. torch.tensor([[.6, .8, .1]11)}, return -1*y*np.log(a+le-10) -(1l-y)*np.log(l-a+le-10)
torch.tensor([[&., 1., ©.]])
4) np.mean (bce (np.array([0,1,0]), np.array([0.6, 0.8, 0.11)))
0.414932

tensor(@.4149)

Compare with nn.BCEWithLogitsLoss ()
11

USCViterbi

School of Engineering

CROSS ENTROPY LOSS — “FROM LOGITS”

numerically simpler (and more stable) to compute

Loss(activation(s)) in one step

example: binary cross entropy

C=-yln(a) —-(1—-y)In(1 —a)

2= ols) C =In(1 + e¥5)
=[1+e7 5]

C=yln(l+eS)+ (@A —y)In(1 +e™*5)
= ln(l + 975)

y=(-1)”

Use this if you do not need a pmf out of your trained model

— i.e., if you will threshold the outputs of the trained model

Compare with nn.NLLLoss ()

12

USCViterbi

School of Engineering

CROSS ENTROPY LOSS — “FROM LOGITS”

numerically simpler (and more stable) to compute
Loss(activation(s)) in one step

example: multicategory cross entropy

M
C:_ZYiln Ze_:s,.] C =K(s) —ZYiSi
=] i=1

M
= = wlsi K]
i=1

<

C =K(s) — s,
==) yisi +K(s)
i=1

K(s) =1In (Z esf>

J

13

USCViterbi

School of Engineering

CROSS ENTROPY LOSS — “FROM LOGITS”

K(s) =1In <Z esf>
J
= max; s;
max*(x,y) = In(e* + e”) numerically stable approach
= max(x,y) + ln(l + e"x_y|)
max*(x,y,z) = In(e* + e¥ + e?)

= max”*(max*(x,y), z)

M
C = rnax‘;.I< Sj — E ViS; C = max]’-‘ Sj — Sm
=1

14

USCViterbi

School of Engineering

HINGE LOSS

for binary classifier with target/labels in {—1,+1}

penalize misclassification (threshold)

Hinge loss with label y € {-1, + 1}

raw classifier output (w'x)

C = max(1 — ya, 0) a=sy€{-1,+1}

typically use linear output activation

torch.nn.MarginRankingLoss, margin=l1 15

USCViterbi

School of Engineering

PYTORCH LOSS FUNCTIONS

nn.LlLoss

nn.MSELoss

nn.CrossEntropyloss

nn.CTCLoss

nn.NLLLoss

nn.PoissonNLLLoss

nn.KLDivLoss

nn.BCELoss

nn.BCEWithLogitsLoss

https://pytorch.org/docs/master/nn.html#loss-functions

Creates a criterion that measures the mean absolute error
(MAE) between each element in the input X and target ¥ .

Creates a criterion that measures the mean squared error
(squared L2 norm) between each element in the input X and
targety .

This criterion combines nn.LogSoftmax() and
nn.NLLLess() inone single class.

The Connectionist Temporal Classification loss.

The negative log likelihood loss.

Negative log likelihood loss with Poisson distribution of
target.

The Kullback-Leibler divergence loss measure

Creates a criterion thar measures the Binary Cross Entropy
between the target and the output:

This loss combines a Sigmoid layer and the BCELoss in one
single class

16

USCViterbi

School of Engineering

CUSTOM LOSS FUNCTIONS

PyTorch = simple custom loss functions

def my_loss(output, target):
loss = torch.mean((output - target)**2)
return loss

model = nn.Linear(2, 2)

x = torch.randn(l, 2)

target = torch.randn(l, 2)
output = model(x)

loss = my_loss(output, target)
loss.backward()
print(model.weight.grad)

reimplementation of nn.MSELoss

17

USC Viterbi
School of Engineering

WEIGHT
REGULARIZATION

USCViterbi

School of Engineering

WHY REGULARIZE

Underfitting zone

Overfitting zone
D D’

will it work on
similar data,
optimize on 3 but from

some dataset (with same different

Generalization / statistical vt
=2 ? i
! eiror S—_— model) (ostensibly)?

g/ '-.“ accuracy

will it work on
different data

Optimal Capacity
capacity

trade-off between over and under fitting Main goal Of
is the Bias-Variance trade-off . .
Machine Learning
is to GENERALIZE

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http://www.deeplearningbook.org. 19

USCViterbi

School of Engineering

REGULARIZERS

Main goal of Machine Learning is to
GENERALIZE

regularization is anything you do in training that is aimed at
improving generalization over accuracy —
i.e., anything that does not optimize the cost on the training data

When people say “regularizer” they usually mean a narrower definition:

an additive term to the loss function that prevents
weights from getting too large

20

USCViterbi

School of Engineering

HOW TO REGULARIZE

Why do large weights correspond to over-fitting???

T L T T T 7 T L T T LN LN T 400
2+ A G(w) ——

>_“/;’_'<—‘ 6 - 350 T
5 | | 300 - i
| 250 .

4 | -
] 200 - -

3 _
7] 150 - -
- 2r] 100 .
- 1F — 50 .

)
s L 2 L Al L - O L ol L ol " Pa— | " P | L P 0 L ol 1 2l ruf | L Ll L L
100 1000 10000 100000 1 10 100 1000 10000 100000 1 10 100 1000 10000 100000
weight evolution learning curve (loss) L2 norm of weights

MacKay, Information Theory and Inference, Cambridge University Press, 2003 21

USCViterbi

School of Engineering

HOW TO REGULARIZE

This is an experimental observation

regularizer coefficient

weight evolution
(L2 regularization)

1000 10000 100000

Gw) ——

i -2
N -3
. -4
-12 L L Ll
1 10 100 1000 10000 100000 1 10
7
ol
6|
oL
learning curve (loss) |
2L
1 1 1r
1 10 100 1000 10000 100000 1 10

MacKay, Information Theory and Inference, Cambridge University Press, 2003

1000 10000 100000

1000 10000 100000

USCViterbi

School of Engineering

REGULARIZERS — L1, L2

L2 regularization ~ _ -~ + AllwlI2 — Wwew—7n|—+ 2w

L1 regularization

(LASSO)

aC
C = Cho-reg + 4 lwll4 — > w<ew-—h (% + Asgn(w)>

As we saw earlier: these can be _
Log Density

viewed as being induced by an a \

priori distribution on the weights e Laplace /

= Laplace
W]th MAP We]ght eSt]matlon Gaussian / Gaussian

AN

23

USCViterbi

School of Engineering

REGULARIZERS

Importance of small weights

~y

Importance of minimizing training loss

A=0 w” ~ argmin Cno—reg (w)

Typically: 107> s 1< 1073

24

USCViterbi

School of Engineering

REGULARIZERS IN PYTORCH

https://pytorch.org/docs/stable/optim.html

CLASS torch.optim.SGD(params, Ir=<required parameter>, momentum=0, dampening=0,

DURCE]

weight decay=0, nesterov=False)

Implements stochastic gradient descent (optionally with momentumy).

Nesterov momentum is based on the formula from On the importance of initialization and momentum in deep learning.

Paramerters

+ params (iterable) - iterable of parameters to optimize or dicts defining parameter groups
s Ir (float) - learning rate

+ momentum (float, optional) - momentum factor (default: 0)

= weight_decay (float, optional) - weight decay (L2 penalty) (default: 0)

+ dampening (f/oat, optional) - dampening for momentum (default: 0)

+ nesterov (bool, optional) - enables Nesterov momentum (default: False)

optim.SGD([

2 {'params': model.base.parameters(), 'weight decay': @.}, Use per-parameter
i : 1152{*3?5': model.classifier.parameters(), 'weight_decay': 8.81} Options fOr more ContrOl

Most optimizers include a weight decay parameter
L? penalty, default =0

works with autograd package

25

https://www.tensorflow.org/api_docs/python/tf/keras/regularizers?hl=de

USCViterbi

School of Engineering

REGULARIZERS IN PYTORCH
But how to back-propagate with regularized loss???

11 regularization, 12 regularization = torch.tensor(@), torch.tensor(g)

optimizer.zero_grad()
outputs = model{inputs)
cross_entropy_loss = F.cross_entropy({outputs, targets)

o o T 5 O - SO W 5 =

for param in model.parameters():
8 11 _regularization += torch.norm{param, 1)
12 _regularization += torch.norm(param, 2)%*2

1 loss = cross_entropy_loss + 11 regularization + 12 regularization
12 loss.backward()
13 |optimizer.step()

autograd keeps track! #% x in range [6, 1]
x = torch.rand(3,2,requires_grad=True)
loss = torch.sum(torch.abs(x))
loss.backward()

gradient should be all one

¥.grad

Lt Pl et

[T oy R =Y

tensor({[[1., 1
[1., 1.],
[1., 1

26

USCViterbi

School of Engineering

LET’S TRY L2 REGULARIZATION...

Loss with Regularizer: 0 Loss with Regularizer: 1e-07 Loss with Regularizer: 1e-06 Loss with Regularizer: 1e-05
0.50 050 — train loss — train loss — train loss
: —— val loss 0.50 —— val loss 050 —— val loss
.4 .4
3os 305 g 0457 9 0.45
g‘ pa0 z 040 g- 0.40 \ N~ 3 \ A A—
g § g Fow] | A\
Z03 Zo3s Zo3s 5
2 @ 2 @ 035
g 030 8 030 g 4
o u o 0.30 u
% 2 @2 @030
0.25 0.25
T 3 goxs 3
2020 2020 E 020 2025
0.15
— train loss 015 0.15 0.0
— val |
0.10 val loss 010 o015
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
epochs epochs epochs epochs
Loss with Regularizer: 0.0001 Loss with Regularizer: 0.001 Loss with Regularizer: 0.01 Loss with Regularizer: 0.1
055 — train lnss — train lnss 110 — train loss —— train loss
—— val loss — wval loss —— val loss — wal loss
22
. 050 , 065 L 105 .
2 a 2 H
-4 g -4 g
S 3 S 5
2 2 2 g21
So4s S 060 g 100 3
£ € £ £
@ I @ I
2 a 2 230
3 8 £ 095
g 0.40 g g S
w w 0.55 w v
2 a 2 b
= = = L
o] o T
= = = S 19
5035 35 £ 050 £
= = = =
0.50
0.85
0.30 18
— ——— —
0 5 w15 20 25 30 35 40 0 5 15 20 25 30 35 40 i 5 w15 20 25 30 3% 40 0 5 w15 20 25 30 35 40
epochs epochs epochs epochs

just using regularization, we need A~1e-3 to prevent over-
fitting, but the loss is much higher (~0.45 vs 0.1)

27

USCViterbi

School of Engineering

LET’S TRY L2 REGULARIZATION...

Loss with Regularizer: 0

Loss with Regularizer: le-07

Loss with Regularizer: 1le-06

Loss with Regularizer: 1e-05

0.96 1 — train accuracy 0.96 1 — train accuracy 09871 train accuracy —— train accuracy
—— val accuracy —— val accuracy —— val accuracy 0.94 4 — val accuracy
0.94 1 0.94 0944
0.92 1
0.92 | 0.92 { 0.92
0.90 4
> 0.90 1 Z 0.90 > 090 >
e e g g
s s] S 0.8 4
5 0881 S osa ELECS g
1 0.86 1
0.86 { 0.86 1 086
0.84 0.84 0.84 0841
0.82 0.82 0.82 0.82 1
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 o 5 10 15 20 25 30 35 40 o 5 10 15 20 25 30 35 40
epochs epochs epochs epochs
Loss with Regularizer: 0.0001 Loss with Regularizer: 0.001 Loss with Regularizer: 0.01 Loss with Regularizer: 0.1
.92 | — train accuracy — train accuracy
0.66 1
—— val accuracy 0.82 —— val accuracy ||
I
0.50 0.65 1
0.81 4
.. 0.88 . . L 064
f f f n
e e e g
g g g 0.80 3
< g6 4 4 4 < 0.63
0.84 0.79 0.62 1
—— train accuracy —— train accuracy 0614
0.82 ~—— val accuracy 0.78 1 —— val accuracy
0.81
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 o 5 10 15 20 25 30 35 40
epochs epochs epochs epochs

same trend as the loss...
(note: this is with 80/20 train/loss split)

not totally satisfying!

28

USC Viterbi
School of Engineering

DROPOUT
REGULARIZATION

USCViterbi

School of Engineering

DROPOUT — A DIFFERENT TYPE OF REGULARIZATION

remove nodes in a layer with some dropout probability/rate

the random pattern is generated at the start of each mini-batch
and held fixed during that mini-batch

Vi
A\
Al
%X
O

4

7,
H
A
oS
O
A

>

Q)

I ‘

G
&
4

\

\/
Y
A
W
)

N

l)
o
N
X
“\E

5
g‘v

5
)

O
®:

(a) Standard Neural Net (b) After applying dropout.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent
neural networks from overfitting,” Journal of Machine Learning Research, vol. 15, pp. 1929-1958, 2014

30

USCViterbi

School of Engineering

DROPOUT

very effective at reducing over fitting and improving generalization

2.5_\“
\
\
2alf Without dropout A
E %)' (\ ‘,w ,,"._‘04\4\ K\Q‘%_‘/'Wh‘/\‘, AM'\'“"‘.
c w\ o N
-% \ \/ “\, yk \\ ‘ /‘A"/\/ \/\/ W\ﬁw /W{
£ 15t
g .\\"‘W With dropout
AR AL
N ,) My
0’{‘1"\,'/\"‘“\\/ i\ MR
7NN ‘ ”VA A RE
1.0 WJ‘\I’ ’ M '\M/
0 206000 400lOOO 600IOOO 800I()00 1000000

Number of weight updates

Figure 4: Test error for different architectures
with and without dropout. The net-
works have 2 to 4 hidden layers each
with 1024 to 2048 units.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent
neural networks from overfitting,” Journal of Machine Learning Research, vol. 15, pp. 1929-1958, 2014 31

USCViterbi

School of Engineering

DROPOUT — ONLY DURING TRAINING!

Dropout is used during training, but in inference mode, all
nodes are present

W pPW
Present with Always
probability p present
(a) At training time (b) At test time

for inference, replace the trained weights with p - w,
where (1 — p) is the dropout rate

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent
neural networks from overfitting,” Journal of Machine Learning Research, vol. 15, pp. 1929-1958, 2014

32

USCViterbi

School of Engineering

DROPOUT EXAMPLE

What happens when we train a neural net on Neilson’s nonlinear function?

def (x):
X X * np.sin(X) np. cos(X)

0.10 0.l5 1.10 1.'5 2.I0 2.'5 3.IO O.|0 0.‘5 1.10 1.l5 2.I0 2.I5 3.I0
no dropout 20% Dropout

33

http://neuralnetworksanddeeplearning.com/chap4.html

USCViterbi

School of Engineering

DROPOUT INTUITION

Ensemble methods: train multiple networks for same task and average

Dropout can be viewed as an efficient way to do this in a single network

individual (or small groups of) nodes must do a reasonable job on he task w/o
the deleted nodes lead to Robustness/Generalization

34

USCViterbi

School of Engineering

DROPOUT IN PYTORCH - JUST ANOTHER LAYER

Net

import torch

import torch.nn as nn -
import numpy as np

import torch.nn.functiconal as F

class Net(nn.Module):
def _ init (self):
super(Met, self)._ init_ ()
self.hidden = nn.Linear(28%28, 128)
self.dropout = nn.Dropout(p=8.3)
self.output = nn.Linear(128, 18)

e I = RN o B R W S)

,~
@ W o
Tozn

- Dropout[dropout]

13 def forward(self, x):

14 x = F.relu(self.hidden(x)) B Ottt Linearout..
15 x = self.dropout(x) input.3

16 x = self.outpot(x)

jé RAINAD & Layer (type) Output Shape Param #]

:: === == === inp@t.3

19 | model = Net() Linear-1 [-1, 1, 1, 128] 100,480

2@ Dropout-2 [-1, 1, 1, 128])

21 from torchsummary import summary Linear-3 [-1, 1, 1, 10] 1,290

summary(model, input_size=(1, 1, 28*28)) i . o ‘ 7.
Total params: 181,770 Linear[hidden]

Trainable params: 101,770

%

Non-trainable params: @ %
__ iRput.1
Input size (MB): ©.00 b
Forward/backward pass size (MB): ©.0@

Params size (MB): @.39

Estimated Total Size (MB): ©.39 %MM%

Dropout layer has no trainable parameters —it is an on/off mask
that follows each node in the Dense layer

some layers have dropout built-in (e.g., RNNs) 35

SC Viterbi

School of Engineering

DROPOUT WITH NO L2 REGULARIZATION

Loss with Regularizer: 0; Dropout: 0.1

— loss

0.40

035

0.30

0.25

Multiclass Cross Entropy Loss

et
i
=3

Ll
&

—— val_loss

Q 5 10 15 20 25 30 35
epochs

Loss with Regularizer: 0; Dropout: 0.5

065 — loss

Multiclass Cross Entropy Loss

— val_loss

Q 5 10 15 20 25 30 35
epochs

with dropout of ~ 60%

=
"
o

0.30

Multiclass Cross Entropy Loss

2
v
el

2
o
=

0.50

=
=
el

Multiclass Cross Entropy Loss

=2
&
3

=
W
o

Loss with Regularizer: 0; Dropout: 0.2

— loss
—— val_loss

0 5 10 15 20 25 30 35 40

epochs

Loss with Regularizer: 0; Dropout: 0.6

— loss
—— val_loss

0 5 10 15 20 25 30 35 40

epochs

Multiclass Cross Entropy Loss

0.8

0.7

0.6

0.3

Multiclass Crass Entropy Loss

04

Loss with Regularizer: 0; Dropout: 0.3

— loss
—— val_loss

o
w
=3
—
e
N
=3
i
o
w
=3
w
&

Loss with Regularizer: 0; Dropout: 0.7

— loss
—— val_loss

o
w
=3
—
e
N
=3
i
o
w
=3
w
&

(better than L2 regularization in this case)

Multiclass Cross Entropy Loss

Multiclass Cross Entropy Loss

09

08

a7

06

05

04

Loss with Regularizer: 0; Dropout: 0.4

— loss
—— val_loss

5 10 15 20 25 30 35 40

epochs

Loss with Regularizer: 0; Dropout: 0.8

— loss
—— val_loss

5 10 15 20 25 30 35 40
epochs

, we are not over-fitting and we have a loss of ~ 0.35

36

SC Viterbi

School of Engineering

Accuracy with Regularizer: 0; Dropout: 0.1

Accuracy with Regularizer: 0; Dropout: 0.2

Accuracy with Regularizer:

0; Dropout: 0.3

DROPOUT WITH NO L2 REGULARIZATION

Accuracy with Regularizer: 0; Dropout: 0.4

0.94{ — acc — acc 0929 — acc 090l €
— val_acc 092 { — val_acc —— val_acc — val_acc
0.2 0:90
’ 0.88
090
0.90 0.88
0.86
> > 088 > >
& & 3 &
co88 g £0.86 <3
T] 3 T
b £ 088 g g o8
0.86 084
0.84 0.82
0.84
0.82
0.82 0.80
0.82
0.80
0.80
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
epochs epochs epochs epochs
Accuracy with Regularizer: 0; Dropout: 0.5 Accuracy with Regularizer: 0; Dropout: 0.6 Accuracy with Regularizer: 0; Dropout: 0.7 Accuracy with Regularizer: 0; Dropout: 0.8
— J— 0.88
acc 088 acc
0884 val_acc —— val_acc 0.85
0.86
0.86 J
0.84
0.86 0.80
0.84
0.82
3084 g o) o)
4 2082 4 4
082 080 0.78
0.76 0.70
080 078
0.74
0.78 0.76 — acc
072 0.65 —— val_acc
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
epochs epochs epochs epochs

similar trend as loss

(better than L2 regularization in this case)
37

USCViterbi

School of Engineering

DROPOUT AND L2 REGULARIZATION

Loss with Regularizer: 1e-05; Dropout: 0.4

— loss
—— val_loss

° = o
= & &
& 2 3

Muilticlass Cross Entropy Loss
=
=
3

035
0.30

0 5 10 15 20 25 30 35 40

epochs
Accuracy with Regularizer: 1e-05; Dropout: 0.4

0809 5ec

—— val_acc
0.88
0.86

Accuracy
o
'

082

0.80

0.78 T T T T T T
0 5 10 15 20 25 30 35 40
epochs

Loss with Regularizer: 1e-05; Dropout: 0.5

Loss with Regularizer: 0.0001; Dropout: 0.4

0.65 — loss — loss
— val_loss —— val_loss
060 0.60
2 }
3 i
Z 055 hy
g 055
g i
I j
@ 0.50)
a }
8 ! 050
v ’
@ i
2045 H
g !
El §0.45
= 0.40 ;
035 0.40
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
epochs epochs
Accuracy with Regularizer: 1e-05; Dropout: 0.5 Accuracy with Regularizer: 0.0001; Dropout: 0.4
— acc AN
ogs{ — wlac 088 Y\
"
0.86 0.86
5084 3
g 3 084
H 5
g M
< 0.82 Z
0.82
0.80
0.80
0.78 — acc

0 5 10 15 20 25 30 35 40
epochs

val_acc

0 5 10 15 20 25 30 35 40
epochs

Multiclass Cross Entropy Loss

Loss with Regularizer: 0.0001; Dropout: 0.5

0.65

2
=9
3

0.55

=4
i
S

e
-
i

0.40

— loss
— wval_loss

NN [PV SNV

0.88

0.86

o
@
£

Accuracy

et
@
=

0.80

best achieves test loss ~0.4, test accuracy ~ 88%

5 10 15 20 25 30 35 40
epochs

Accuracy with Regularizer: 0.0001; Dropout: 0.5

WYV

— acc
val_acc

0 5 10 15 20 25 30 35 40
epochs

38

USCViterbi

School of Engineering

CONCLUSIONS FROM REGULARIZATION EXPERIMENTS

Main goal of Machine Learning is to
GENERALIZE

A combination of dropout and L2 regularization worked best

This required a pretty-high dropout rate plus regularization
to not over-fit...

Nominal Values:
dropout rate: ®20%
L2 Regularization: [1e-5, 1e-3]

What does this suggest to you??

39

USCViterbi

School of Engineering

SMALLER MODEL, LESS REGULARIZATION

Loss with100 Hidden; Regularizer: 0.0001; Dropout: 0.3 Accuracy with 100 Hidden; Regularizer: 0.0001; Dropout: 0.3
— loss — acc

0.60 - —— val_loss 0.88 4 —— val_acc
- 0.55 4
- 0.86
Q
2
E: >
- 5
b 0.50 A 5 0.84 -
E (W)
o <
0
f
2 0.45 - 0.82 -
3
=

0.40 ~ 0.80 1

0] 10 15 20 25 30 35 40 (I) é 1I0 ll5 2I0 2I5 3I0 3I5 4IO
epochs epochs

results with 100 hidden neurons

40

USCViterbi

School of Engineering

Multiclass Cross Entropy Loss

SMALLER MODEL, LESS REGULARIZATION

Loss with48 Hidden; Regularizer: 0.0001; Dropout: 0.2 Accuracy with 48 Hidden; Regularizer: 0.0001; Dropout: 0.2
0.65 - —— loss 0.88 -
—— val_loss
0.60 A
0.86 -
0.55 A
> 0.84
(o]
e
0.50 g
< 0.82
0.45 A
0.80 A
0.40 A
— acc
0.78 1 —— val_acc
(l) é 1IO 1I5 2IO 2I5 3I0 3I5 4I0 (l) é 1I0 1I5 20 25 30 35 40
epochs epochs

similar results with 48 hidden neurons

41

USCViterbi

School of Engineering

ANOTHER REGULARIZATION METHOD
“early stopping”

stop training when val starts performs consistently better than train

Accuracyjwith Regularizer: 0; Dropout: 0.3
0921 — acc
—— val_acc
0.90 1
0.88 -
>
=
T 0.86
=1
9
<
0.84 -
0.82 1
0.80 -
0 5 10 15 20 25 30 35 40
epochs

42

USC V1terb1

School of Engine

OPTIMIZERS

USCViterbi

School of Engineering

OPTIMIZERS

Optimizers are modifications to standard
Stochastic Gradient Descent (SGD)

Three common modifications:

1. Gradient filtering
2. Gradient normalization

3. Learning rate schedule

1 and 2 usually associated with the “optimizer”

* learning rate schedule considered a separate parameter tuning task

44

USC Viterbi
School of Engineering

LTI FILTER
REVIEW

USCViterbi

School of Engineering

REVIEW OF ARMA LTI FILTERS

yln]
LD AR LD LD LD .
7 S Z A
(0]] | b2 | BL—2] A L —1] 4 B[L] » Moving Average component
z[n]
@ BB B
r v @[n\——lﬁ
- 1] vy 2] vy L—2 L—1]y L
al1] al2] all =2y ol =1y allly Autoregressive component
D.___D. (DD
N N L/ %

vn] = z[n] — (a[ljv[n — 1] + a2]v[n — 2] + - - - a[L]v[n — L])

y[n] = b[0u[n] + b[1]v[n — 1] + b[2lv[n — 2] + - - - + b[L|v[n — L]

state[n] = (v[n — 1],v[n — 1],...v[n — L])

implements this difference equation:

L

yln] = »

L

blilzfn —i] = > alily[n — 4]

=1
Frequency response:

~b[0] + B[]zt +b[2]2 % b[L] 2

H(z) = 1+all]lz7' +a[2]z72--- 4+ a[L]z—F =

this is the canonical block
diagram for an Lth order filter

46

USCViterbi

School of Engineering

REVIEW OF ARMA LTI FILTERS

first order ARMA filter . y[n]
-;\“/ >
b[O] & b[1] &
o /4R
- ~ D
N o) ofn — 1]

: a[l] v
D
NU

yln] = —a|l]y[n — 1] + b[0]x|n] + b[1]x[n — 1]

b[0] + b[1]z~1

HZ) = o

47

USCViterbi

School of Engineering

REVIEW OF FIRST ORDER LTI FILTERS

P
S special cases for AR1:
S Ll P Unit DC-Gain AR1: y[n] = ay[n — 1] + (1 — @)x[n]
- all]
(1-a)
S H(z) =
(2) 1+az1
v has input-gain = (1 — a)
b[0]
z[n]
D g - Unit input-Gain ART1: y[n] = ay[n — 1] + x[n]
- a[1]
H(z) =
— B =T

y[n] = —a[1]y[n — 1] + b[0]x[n] has DC-gain = 1/(1 — a)

b[0] Recall: as a approaches 1, the filter gains
1+ a[l]z? memory and behaves as low-pass

H(z) =
48

USCViterbi

School of Engineering

REVIEW OF FIRST ORDER LTI FILTERS

unit step response with a = 0.9 special cases for ART:

G)_Q_ AR1UnitDCGa::.‘.M,uID' Un]t DC-Ga]n AR']: y[n] = ay[n —_ 1] -|— (1 _ a)x[n]
= 0.6 """“ (1 - a)
;E: — 1 _ n+1 H —
=04, stnl “ 2 1+ az™1
N TﬂH has input-gain = (1 — a)

Unit input-Gain ART: y[n] = ay[n — 1] + x[n]

G}_’_ AR1 Unit Input Gain '""""'
| 1 — qn*1 H(2) = Taz
s[n] = T
. m —a has DC-gain = 1/(1 — a)
o] Tﬂ = = = - Recall: as a approaches 1, the filter gains
e o memory and behaves as low-pass

49

USCViterbi

School of Engineering

TRANSIENT COMPENSATION

Unit DC Gain AR1: transient to reach steady state DC response
Unit input Gain AR1: pole dependent DC gain

transient compensation
yln] = ayln — 1] + (1 — a)x[n]

AR1 ’

(1 - (X) unit DC gain =®
H(z) =——
1—az
pole at a
1
s[n] =1 — a™t? T anit
transient compensated step response
109 _e_ AR1 Unit DC Gain 1.01
ﬂﬂ“““““
0.8 “0“' 0.8
"“ll
20 ! **] , works for any scaled
® Transient Compensated .
£ 04] 0.4 step input!
021 [H 0.2
W
0 10 20 30 a0 0 10 20 30 40

time (n)

50

USCViterbi

School of Engineering

TRANSIENT COMPENSATION - NOISY EXAMPLE

Transient compensation
AR1 Cg
unit DC gain I

pole at «
4 1
—— Transient Compensated 1 —antl
3 - = No Transient Compensated
—— Noise Free Signal
2]
this example is a cosine in noise
14 (@ = 0.9)
O -
—1 1
—2 1
_3 -
0 20 40 60 80 100 120 140
time (n)

51

USC Viterbi
School of Engineering

DEEP-LEARNING
OPTIMIZERS

USCViterbi

School of Engineering

SUMMARY OF OPTIMIZERS

SGD

SGD w/ momentum

SGD w/ Nesterov Momentum

Adagrad

Adadelta

RMSprop

Adam

Nadam (Adam w/ Nesterov)

gradient filtering

gradient normalization

grad variance filter

learning rate schedule

none none n/a separate
AR1, unit input gain none n/a separate
ARMA1 (1 pole, 1 zero) none n/a separate
separate, but gradient norm
none yes summer
does alter
none yes AR1, unit DC gain separate, but gradient norm
does alter
none yes AR, unit DC gain separate, but gradient norm
does alter
AR1, unit input gain, - AR1, unit input gain, separate, but gradient norm
transient compensation Y transient compensation does alter
ARMA1, transient yes ARMA1, transient separate, but gradient norm

compensation

compensation

does alter

Ruder, Sebastian. "An overview of gradient descent optimization algorithms.” arXiv preprint arXiv:1609.04747 (2016).

53

USC Viterbi
School of Engineering

GRADIENT
FILTERING

USCViterbi

School of Engineering

GENERAL OPTIMIZER STRUCTURE + SGD

parameter update: | 8[i] = 6[i — 1] + A[{]

ac ac
input step/gradient (update): VIi] = 301 — 1] glil = —n 301 = 1]
SGD: SGD with momentum:

v[i] = av]i — 1] + gl[i]
Ali] = g[i] Ali] = v[i]

gli] 1 | Af

1—az! ’

pole at «

Momentum: low-pass filter on gradient —
removes high-frequency gradient noise

55

USCViterbi

School of Engineering

“STANDARD” MOMENTUM

Standard Momentum Gradient Filter Frequency Response

momentum = 0.95

25 1
—— momentum = 0.9
g[z] [] A[@] 20 - —— momentum = 0.85
> 1 = —— momentum = 0.8
—az
pole at «

|H(v)| (dB)

Momentum: low-pass filter on the gradient
removes high-frequency gradient noise

v (cycles/sample)

note that your momentum and learning rate are coupled

choosing larger momentum effectively increases your learning rate

0.0 0.1 0.2 0.3 0.4 0.5

56

USCViterbi

School of Engineering

SGD WITH NESTEROV MOMENTUM

parameter update: | 8[i] = 0[i — 1] + A[]

| | o acC L
input step/gradient (update): Vii] = 301 — 1] gli] = —n 36 — 1]
v[i] = av[i — 1] + gli]
Ali]l = (1 + a)v]i] — av]i — 1]
gli] (1+a)—azt A[Z]
1—azl
pole at «

zero at (1 4+ a)/«a

57

USCViterbi

School of Engineering

SGD WITH NESTEROV MOMENTUM

Bengio-Nesterov Momentum Gradient Filter Frequency Response

25 A
g[z] ‘ (1+a)—az™t A[Z]
S R N G Y B
1—az! 20 -
pole at «

zero at (1 4+ a)/a

|[H(v)] (dB)

Momentum: low-pass filter on the gradient
removes high-frequency gradient noise

momentum = 0.95
momentum = 0.9
momentum = 0.85
momentum = 0.8

0.0 0.1 0.2

0.3
V (cycles/sample)

0.4 0.5

note that your momentum and learning rate are coupled

choosing larger momentum effectively increases your learning rate

58

USCViterbi

School of Engineering

STANDARD MOMENTUM VS NESTEROV MOMENTUM

standard
gli] | 1
—{ 1—az1
pole at «
Nesterov
gli] { (1+a)—az!
—_—P
1—az!
pole at «

zero at (1 + a)/a

|H(v)| (dB)

Momentum Filter Frequency Response

20 A

15 A

10 A

—— Nesterov: False (0.9)
——— Nesterov: True (0.9)

0.0 0.1 0.2 0.3 0.4
vV (cycles/sample)

standard momentum attenuates high frequencies

more than Nesterov momentum

0.5

59

USCViterbi

School of Engineering

NESTEROV MOMENTUM (TYPICAL MOTIVATION)

Motivated as compute “preliminary” parameter update before
updating velocity and then adjust for velocity update

typical explanation
Ve = Up—1Ve—1 —|€c—1Vf (Or—1 + He—1Vi—1)

Momentum update Nesterov momentum update

“lookahead” gradient
step (bit different than
original)

Bt - 91:_1 + Ut

momentum
step

momentum
step
actual step

actual step

gradient
step

Ve = Ue—1Vp1 — €1V (O¢_1)

“Bengio’s Formulation”
O, =0; 1 — U—1Vi—1 + UtV + V4

This is what PyTorch does!
= 01 + Uele—1Ve—1 + (1 + p) €1 V(Or_1) .
Effect: adjust momentum

coefficient invariant to
learning rate

Bengio, Yoshua, Nicolas Boulanger-Lewandowski, and Razvan Pascanu. "Advances in optimizing recurrent
networks.” 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2013.

https://jlmelville.github.io/mize/nesterov.html 60

USCViterbi

School of Engineering

NESTEROV MOMENTUM

“Bengio’s Formulation”

v[i] = av]i — 1] + g[i]
oli] =0[i — 1] + (1 + a)v[i] — av]i — 1]
Ali]l = (1 + a)v]i] — av|i — 1]

= v[i] + a ([i] - v[i — 1)) 9l [1-+0)— o Al
~acceleration —az
pole at «

zero at (1+ a)/«

this formulation makes the pattern clear: choose any low-pass filter for
this task — i.e., optimize a second order ARMA filter (e.g., Butterworth)

61

USC Viterbi
School of Engineering

GRADIENT
NORMALIZATION

USCViterbi

School of Engineering

GRADIENT NORMALIZATION

|dea: estimate gradient RMS and normalize
parameter update: 0i] = 0[i — 1] + A[i]

aC o aC
o=t W T Taeno

input step/gradient (update): V[i] =

Can compute the RMS value of V[i] or gli]

this is done by using a low-pass filter on the square of these quantities

— i.e., like computing the sample second moment .

USCViterbi

School of Engineering

GRADIENT NORMALIZATION EXAMPLES
Adagrad:
RMSprop: o (o)? F,‘ 1y | }_‘ %1— mE
: '"Wg(ﬂ ___________________ \ - - (B 1) g
Adadelta: v[i ‘ H@ Teffectiv RVIS(V)
""""""""""""""""" (R
— 64

USCViterbi

School of Engineering

ADAM (THE BEST OF ALL WORLDS?)

use unit-DC gain filters for gradient filtering and for computing
the second moment

use transient compensation to reduce
start-up effects of filters

N mli]
.| AR1 DC-unit gain with ’
transient compensation ’
a mli]
pole at 5 "]
L, (.)2 AR1 DC-unit gain with
transient compensation

pole at [

D. P. Kingma, K. L. Ba, ADAM: A Method for Stochastic Optimization, ICLR 2015 65

USCViterbi

School of Engineering

ADAM IMPLEMENTATION

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g7 indicates the elementwise
square g¢ © g¢. Good default settings for the tested machine learning problems are & = 0.001,
81 = 0.9, B2 = 0.999 and € = 10~8. All operations on vectors are element-wise. With 3% and /33
we denote (31 and 32 to the power ¢.

Require: «: Stepsize
Require: /31,32 € [0,1): Exponential decay rates for the moment estimates
Require: f(0): Stochastic objective function with parameters ¢
Require: 6y: Initial parameter vector
mo + 0 (Initialize 1%' moment vector)
vp + 0 (Initialize 2"¢ moment vector)
t < 0 (Initialize timestep)
while 6, not converged do
t—t+1
gt < Vofi(0:—1) (Get gradients w.r.t. stochastic objective at timestep t)
my < By -my_1 + (1 — 1) - g¢ (Update biased first moment estimate)
v Py v+ (1= F) - gt2 (Update biased second raw moment estimate)
s < my/(1 — 8%) (Compute bias-corrected first moment estimate)
Uy < v/ (1 — BL) (Compute bias-corrected second raw moment estimate)
0 < 0;_1 — - my/(v/0y + €) (Update parameters)
end while
return 0, (Resulting parameters)

D. P. Kingma, K. L. Ba, ADAM: A Method for Stochastic Optimization, ICLR 2015 66

USCViterbi

School of Engineering

ADAM IN PYTORCH

https://pytorch.org/docs/stable/optim.html#torch.optim.Adam

Vi)

N mli]
‘ AR1 DC-unit gain with ‘
‘ transient compensation ‘ l
a

Al = —n——=
pole at (51 . 2 i} == rli]
rli]
AR1 DC-unit gain with —n
transient compensation *te

L—»

e

pole at (9
Default:
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=le-8,
weight_decay=0, amsgrad=False):
my adam = optim.Adam(lr=0.002, betas=(0.92, 0.99)
Tuned: Y e ’ ' ’

eps=1e-09)

D. P. Kingma, K. L. Ba, ADAM: A Method for Stochastic Optimization, ICLR 2015

67

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam

USCViterbi

School of Engineering

ADAM PERFORMANCE

10*

training cost

D. P. Kingma, K. L. Ba, ADAM: A Method for Stochastic Optimization, ICLR 2015

MNIST Multilayer Neural Network + dropout

— AdaGrad

— RMSProp

— SGDNesterov
—— AdaDelta

— Adam

Il

50 100 150 200

iterations over entire dataset

training cost

10°

=
o
—

fa—y
o
o

=
o
-

fury
o
N

103

CIFAR10 ConvNet

AdaGrad
AdaGrad+dropout
SGDNesterov
SGDNesterov+dropout| |
Adam

Adam+dropout

10

1 I
15 20
iterations over entire dataset

25 30 35 40 45

68

USCViterbi

School of Engineering

ADAM GRADIENT FILTER FREQUENCY RESPONSE

AR1 DC-unit gain with | m[l]
transient compensation | l .
pole at 51 .‘1 g Alil = 77]:7‘17[;]]
b
AR1 DC-unit gain with —_— ' -
‘ (')2 H transient_gg%g;nsev\\gon ‘ Oare —_
pole at (B g
s
T
Momentum Filter Frequency Response
20 1 —— Nesterov: False (0.9) ! ' ' !
~—— Nesterov: True (0.9) 0.2 0.3 ' 0.5
15 v (cycles/sample)
@ 10 A
=2
T 59
01 no coupling between momentum and learning rate!
75 B

0.0 0.1 0.2 0.3 0.4 0.5
v (cycles/sample)

69

USCViterbi

School of Engineering

SUMMARY OF OPTIMIZERS

SGD

SGD w/ momentum

SGD w/ Nesterov Momentum

Adagrad

Adadelta

RMSprop

Adam

Nadam (Adam w/ Nesterov)

gradient filtering

gradient normalization

grad variance filter

learning rate schedule

none none n/a separate
AR1, unit input gain none n/a separate
ARMA1 (1 pole, 1 zero) none n/a separate
separate, but gradient norm
none yes summer
does alter
none yes AR1, unit DC gain separate, but gradient norm
does alter
none yes AR, unit DC gain separate, but gradient norm
does alter
AR1, unit input gain, - AR1, unit input gain, separate, but gradient norm
transient compensation Y transient compensation does alter
ARMA1, transient yes ARMA1, transient separate, but gradient norm

compensation

compensation

does alter

Ruder, Sebastian. "An overview of gradient descent optimization algorithms.” arXiv preprint arXiv:1609.04747 (2016).

70

USCViterbi

School of Engineering

COMPARISON OF OPTIMIZERS

— -
:;:‘___;__:_,;._:},_—_;,_1 """ — Momentum £
e — NAG 3

- Adagrad

Adadelta

Rmsprop

https://twitter.com/AlecRad
https://imgur.com/a/Hqolp

Visualization: https://vis.ensmallen.org/

71

USC Viterbi
School of Engineering

LEARNING RATE
SCHEDULERS

USCViterbi

School of Engineering

LEARNING RATE SCHEDULES

Change (typically decrease) the learning rate as
we do more parameter updates (batches)

Recall LMS: large learning rate implies faster convergences, but
more “maladjustment error” (i.e., gradient noise)

Could also use a LR schedule to try to force the optimizer out of
a local minimum

(to go to a better local minimum, likely)

73

USCViterbi

School of Engineering

LEARNING RATE SCHEDULES IN PYTORCH

https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate

learning_rate = 8.1
optimizer = torch.optim.SGD({model.parameters(), lr=learning_rate, momentum=8.9, nesterov=True)
step size: at how many multiples of epoch you decay

step size = 1, after every 1 epoch, new_Lr = Lr*gamma
step size = 2, after every 2 epoch, new Lr = Lr¥gamma

[inc T W I = W % Ty]

ca

gamma = decaying factor
scheduler = 5teplLR{optimizer, step_size=1, gamma=8.1)

for epoch in range(num_spochs):
[+v0]
Decay Learning Rate
scheduler.step()
Print Learning Rate
print('Epoch:', epoch,'LR:", scheduler.get 1r())

[T W R = W N T v R W

=»> scheduler = ...

Rule: apply learning rate scheduling >»> for epoch in range(160):
N o - train(...)
AFTER optimizer update 2> validate(s..)
S scheduler.step()

From LMS, we know that large learning rate implies faster convergences,
but more “maladjustment error” (i.e., gradient noise)

74

USCViterbi

School of Engineering

COMMON LR SCHEDULES

Mi = PMo Exponential Decay

[
ni=mno|1l-)
l 0(Nepochs

ni = TIO,DWPJ Step Exponential Decay

No
1+ ki

ni = Fractional Decay

Another common LR schedule is to decrease the LR at specific epochs in a

stepwise manner

e.g., every 10 epochs: n < 0.1 -7

1.0 1

0.8 1

0.6

0.4 1

0.2 1

0.0 A

—— exponential, rho: 0.9

—— linear

—— step exponential, rho: 0.9, P: 10

—— fractional, kappa: 0.5

20

40
epochs (i)

60

80

100

75

USCViterbi

School of Engineering

EXOTIC “ANNEALING” LR SCHEDULES

Triangular Schedules

Triangular schedule

Triangular schedule with fixed decay

Cyce
f_.%
r : \/ “u : \
—_—

Triangular schedule with exponential decay

Cycle
——
—

L. N. Smith, “Cyclical Learning Rates for Training
Neural Networks”, arXiv:1506.01186

Cosine Schedules

. 1, . . T
e = o + 3 1 =) (1 cos (2)
l

Loshchilov, Ilya, and Frank Hutter. “SGDR: Stochastic gradient descent with
warm restarts.” arXiv preprint arXiv:1608.03983 (2016).

cosine annealing schedule in PyTorch

https://pytorch.org/docs/stable/optim.html#torch.op
tim.lr_scheduler.CosineAnnealingLR

cosine annealing with “warm restarts”

torch.optim.lr_scheduler.CosineAnnealingWarmRestarts

https://www.jeremyjordan.me/nn-learning-rate/ 76

USCViterbi

School of Engineering

TOPIC OUTLINE

Batch Normalization

* Hyperparameter optimization

77

USC Viterbi
School of Engineering

BATCH
NORMALIZATION

USCViterbi

School of Engineering

BATCH NORMALIZATION LAYER

learn the best “level” for internal activations

Input: Values of x over a mini-batch: B = {x1__,,}:
Parameters to be learned: v, /3
Output: {y; = BN, g(x;)}

1 1
UB —Zﬂfi
mi3

]_ m
0 - > (@i — ps)?
i=1
Li — HUB
Vog +€

yi < vx; + B = BN, (1)

// mini-batch mean

// mini-batch variance

T // normalize

// scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

y and B are trainable parameters

this normalization is done for each mini-batch
but what to do when using trained network for
inference?

During inference, replace the mini-batch data-
average mean and variance by the data-average
mean and variance over the entire dataset

11: In NE%, replace the transform y = BN, g(z) with
y=——— 2+ (8- _“/EE]_)
£/ Var[z]+€ A/ Var[z]+e

loffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network
training by reducing internal covariate shift.” arXiv preprint arXiv:1502.03167 (2015). 79

USCViterbi

School of Engineering

TOPIC OUTLINE

Hyperparameter optimization

80

USC Viterbi
School of Engineering

HYPERPARAMTER
OPTIMIZATION

USCViterbi

School of Engineering

We need to search over:
1. Model Architecture

1. Number of layers m GE}B
2. Layer types
3. Number of nodes in each layer 7

2. Loss Functions

3. Regularization Methods
1. L1, L2, L1_L2
2. Vary with layer
3. Weight vs bias

4. Optimizers
1. Type: SGD, Adam, etc.
2. Parameters
3. Learning rate schedules

Emgfiipfcoml

82

USCViterbi

School of Engineering

FOLLOW HIGH-LEVEL GUIDELINES

Loss Function
Binary Classification —=———

M-ary Classification — =————-

Regularization - =————————

Optimizer >

A lot of focus on this in the literature, but designing
your dataset is more important (consider above fine
tuning in practice)

Use sigmoid output activation
with Binary Cross Entropy Loss

Use softmax output activation with
Multi-Class Cross Entropy Loss

Use linear output activation
with MSE loss (L2)

Use dropout and L2 regularization

Target network size so that:
dropout rate ~ 0.2, L2-reg coefficient ~ 1e-4

Adam with defaults is a good start

optim.lr scheduler.ReduceLROnPlateau/()
or simple step LR schedules

83

USCViterbi

School of Engineering

AUTOMATED NETWORK ARCHITECTURE SEARCH AND
HYPERPARAMETER OPTIMIZATION

Approach combines .’

Bayesian optimization with

grid search while targeting
a combination of
classification accuracy and

runtime complexity (CNNs)

84

	Slide 1: Training Deep Neural Networks II
	Slide 2: Topic Outline
	Slide 3: Cost (LOSS) Functions
	Slide 4: Cost (Loss) Functions
	Slide 5: Loss Functions — L2 for Regression
	Slide 6: Loss Functions — L1 for Regression
	Slide 7: Loss Functions — L1 vs L2
	Slide 8: Loss Functions — Multicategory Cross Entropy
	Slide 9: Loss Functions — Multicategory Cross Entropy
	Slide 10: LOSS Functions — Multicategory Cross Entropy
	Slide 11: Cost (Loss) Functions — Binary Cross Entropy
	Slide 12: Cross Entropy Loss — “From Logits”
	Slide 13: Cross Entropy Loss — “From Logits”
	Slide 14: Cross Entropy Loss — “From Logits”
	Slide 15: Hinge Loss
	Slide 16: PyTorch Loss Functions
	Slide 17: Custom Loss Functions
	Slide 18: Weight regularization
	Slide 19: Why Regularize
	Slide 20: Regularizers
	Slide 21: How To Regularize
	Slide 22: How To Regularize
	Slide 23: Regularizers — L1, L2
	Slide 24: Regularizers
	Slide 25: Regularizers in PyTorch
	Slide 26: Regularizers in PyTorch
	Slide 27: Let’s Try L2 Regularization…
	Slide 28: Let’s Try L2 Regularization…
	Slide 29: Dropout Regularization
	Slide 30: Dropout — A Different Type of Regularization
	Slide 31: Dropout
	Slide 32: Dropout — Only During Training!
	Slide 33: Dropout Example
	Slide 34: Dropout Intuition
	Slide 35: Dropout in PyTorch – just another layer
	Slide 36: Dropout with no L2 Regularization
	Slide 37: Dropout with no L2 Regularization
	Slide 38: Dropout and L2 Regularization
	Slide 39: Conclusions from Regularization Experiments
	Slide 40: Smaller Model, Less Regularization
	Slide 41: Smaller Model, Less Regularization
	Slide 42: Another Regularization Method
	Slide 43: Optimizers
	Slide 44: Optimizers
	Slide 45: LTI Filter Review
	Slide 46: Review of ARMA LTI Filters
	Slide 47: Review of ARMA LTI Filters
	Slide 48: Review of First Order LTI Filters
	Slide 49: Review of First Order LTI Filters
	Slide 50: Transient Compensation
	Slide 51: Transient Compensation - Noisy Example
	Slide 52: Deep-Learning Optimizers
	Slide 53: Summary of Optimizers
	Slide 54: Gradient Filtering
	Slide 55: General Optimizer Structure + SGD
	Slide 56: “standard” Momentum
	Slide 57: SGD with Nesterov Momentum
	Slide 58: SGD with Nesterov Momentum
	Slide 59: Standard Momentum vs Nesterov Momentum
	Slide 60: Nesterov Momentum (typical motivation)
	Slide 61: Nesterov Momentum
	Slide 62: Gradient Normalization
	Slide 63: Gradient Normalization
	Slide 64: Gradient Normalization Examples
	Slide 65: Adam (the best of all worlds?)
	Slide 66: Adam Implementation
	Slide 67: Adam in PyTorch
	Slide 68: Adam Performance
	Slide 69: Adam Gradient Filter Frequency Response
	Slide 70: Summary of Optimizers
	Slide 71: Comparison of Optimizers
	Slide 72: Learning Rate SchedulERS
	Slide 73: Learning Rate Schedules
	Slide 74: Learning Rate Schedules in PyTorch
	Slide 75: Common LR Schedules
	Slide 76: Exotic “Annealing” LR Schedules
	Slide 77: Topic Outline
	Slide 78: Batch NormaliZation
	Slide 79: Batch Normalization Layer
	Slide 80: Topic Outline
	Slide 81: Hyperparamter Optimization
	Slide 82: this Is Hopelessly Complex!?!?!
	Slide 83: Follow High-Level Guidelines
	Slide 84: Automated Network Architecture Search and Hyperparameter Optimization

