USC V1terb1

School of E

CONVOLUTIONAL
NEURAL NETWORKS

EE 541 — UNIT 7

DR. BRANDON FRANZKE

Spring 2025

USCViterbi

School of Engineering

OUTLINE FOR SLIDES

* Motivation, applications

» Basic 2D convolution operations

o PyTorch 2Dconv layer
* Pooling and stride
» Fashion MNIST example
* Visualization methods
« Some common CNN structures
* Reduced complexity CNN architectures

* Outline of Back-propagation for CNNs

USC Viterbi

School of Engineering

CONVNETS

USCViterbi

School of Engineering

(TYPES OF NEURAL NETWORKYS)

Convolutional NNets

MLP layers

\\
.?«

(
.

convolutional max-pooling
layer

(sub-sampling)

Can view convolutions as feature extractors for MLP classifier
(this feature extraction is learned) 4

USCViterbi

School of Engineering

CNNS ARE WIDELY USED,

USCViterbi

School of Engineering

CNNS ARE WIDELY USED, ESPECIALLY IN VISION TASKS

Pose estimation

USCViterbi

School of Engineering

CNNS ARE WIDELY USED, ESPECIALLY IN VISION TASKS
Deep Fakes

https://thispersondoesnotexist.com https://thisxdoesnotexist.com/ 7

https://thispersondoesnotexist.com/
https://thisxdoesnotexist.com/

USCViterbi

School of Engineering

CNNS: USE WHEN FEATURE INFORMATION IS LOCALIZED

Policy selection
frame: t-3 t-2 t-1 t

“enemy+diver’

Captioning

i train is traveling down the tracks at a = a bench sitting on a patch of grass next o

rain station a cake with a slice cut out of it a sidewalk

USC Viterbi

School of Engineering

frequency

CNNS:

does not need to be a “natural” image —
e.g., signal classification from spectrograms

USCViterbi

School of Engineering

CNNS: CHANGING WHAT IS POSSIBLE WITH CV

ImageNet Large Scale Visual Recognition Challenge results

_é*f;thi?”‘y:tgl"t;;/ CNNs changed the game for
very team got at leas 6 o« o
wrong many computer vision tasks

In 2012, the team to first use
deep learning was the only
50 team to get their error rate
below 25%.

The following year

1
et e e The leap that transformed Al research—

25% or fewer wrong.

o and possibly the world

In 2017, 29 of 38
teams got less than
5% wrong.

10

USCViterbi

School of Engineering

CNNS: 1D, 2D, 3D

there are 1D and 3D convolutional layers, but conv2D is most widely used

Figure 2: Visualization of a stack of causal convolutional layers.

1D Conv layers

Output

nadentayer 1D CNN ~ time series data
3D CNN ~ video data

Hidden Layer

Input

(recurrent networks are options too
and can be combined with conv)

Oord, Aaron van den, et al. "Wavenet: A generative model for raw audio.” arXiv preprint arXiv:1609.03499 (2016). 11

USCViterbi

School of Engineering

OUTLINE FOR SLIDES

» Basic 2D convolution operations

PyTorch 2Dconv layer
* Pooling and stride
» Fashion MNIST example
* Visualization methods
« Some common CNN structures
* Reduced complexity CNN architectures

* Outline of Back-propagation for CNNs

12

USC Viterbi
School of Engineering

2D
CONVOLUTION

USCViterbi

School of Engineering

2D CONVOLUTION OPERATIONS

2D convolution:

yli, 1 = x[i, 1 * hli,j] = Z Z [m, n]Ali —m,j —n]

mn_—

Z Z x[m,n]hli —m,j —n]

—Ln=-L

and 2D correlation:

yli,jl = x[i, j] * hli,j] = z 2x[mn]hz+m1+n]

m——oo Tl_—

— mZL nZLx[m, nlhli + m,j + n|

14

USCViterbi

School of Engineering

2D CONVOLUTION OPERATIONS

Since we will be learning the 2D filter h[i, j] we can adapt a
correlation convention as “convolution”

(0 @) (0 0)

yli,jl = xl[i,j] * K[i,j] = Z ZKmn [i + m,j +n]

Mm=—00 N=—00

yli,j] = x[i, j] % K[i, j] = z K[m, nlx[i + m,j + n]
(m,n)esupp(K)

typically, the support region of the kernel is small —
e.g., 3x3 kernels are very common 15

USCViterbi

School of Engineering

2D CONVOLUTION OPERATIONS

(-(1x3)+(0x0)+(1x1)+
(-2x2)+(0x6)+(2x2) +
(-(1x2)+(0x4)+(1x1) =-3

o
Aaranm)

Convolution filter

RN T

Destination pixel

This is what you learn!

o 0 g Kernel
56 | 139 | 85 -1 0 .
54 | 84 | 128 5 1
70 | 129 | 127 1 0

§

g

16

USCViterbi

School of Engineering

TRADITIONAL 2D IMAGE FILTERS

2D filters are widely used in the field of image processing

White Grey Convolution b
5 5 5
5 5 5 . el
555000.*10 0 15 15 0O

1.0 —
: : : g g g} 1.0 i 15 15 Original Image

| 0 15 15 0 |
5 5 505050 ,,4"

White Grey Black
Grey

many computer vision tasks require many types filters to produce features

CNNs learn these filters from the dataset —
learn good feature extraction 17

USCViterbi

School of Engineering

2D CONVOLUTION OPERATIONS — PADDING

no padding
empty padding in PyTorch

Figure 2.1: (No padding, no strides) Convolving a 3 x 3 kernel over a 4 x 4
input using unit strides (i.e., i =4, k =3, s =1 and p = 0).

;(
1Y |

symmetric padding

/ padding:[1 | [1,1]] in PyTorch

Figure 2.3: (Half padding, no strides) Convolving a 3 x 3 kernel over a 5 x 5
input using half padding and unit strides (i.e.,i =5, k=3,s=1and p=1).

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning.” arXiv preprint arXiv:1603.07285 (2016). 18

USCViterbi

School of Engineering

2D CONVOLUTION OPERATIONS — PADDING

Figure 2.4: (Full padding, no strides) Convolving a 3 x 3 kernel over a 5 x 5
input using full padding and unit strides (i.e., i =5, k =3, s =1 and p = 2).

other padding conventions exist —
e.g., “full padding”

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning.” arXiv preprint arXiv:1603.07285 (2016). 19

USCViterbi

School of Engineering

CONVOLUTION OPERATIONS — PADDING WITH LAYERS

Padding Layers

n

n.ReflectionPadld

1.ReflectionPad2d

n.ReplicationPadld

n.ReplicationPad2d

1.ReplicationPad3d

1.ZeroPad2d

n.ConstantPadild

Pads the input tensor using the reflection of the input
boundary.

Pads the input tensor using the reflection of the input
boundary.

Pads the input tensor using replication of the input
boundary.

Pads the input tensor using replication of the input
boundary.

Pads the input tensor using replication of the input
boundary.

Pads the input tensor boundaries with zero.

Pads the input tensor boundaries with a constant value.

Pads the input tensor boundaries with a constant value.

* replication
» reflection
* Z€ero

« constant

PyTorch padding
layers provide
greater control

20

USCViterbi

School of Engineering

2D CONVOLUTION OPERATIONS

kernel

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning.” arXiv preprint arXiv:1603.07285 (2016).

21

USCViterbi

School of Engineering

3D CONVOLUTION

yli,j, k] = x[i, j, k] * h[i, j, k] = z h[m,n, o]x[i +m,j + 1 k + 0]
(m,n,0)esupp(K)
x[i, j, k] yli, J, k]
hli, j, k]

“slide” h over and compute 3D dot
product for each output voxel

22

USCViterbi

School of Engineering

CONV2D FILTERING IN DEEP LEARNING

C1ilr1
height
X
width * — Hout
X Hin h Cin
channels w
Wout
Wi
(i, 7, k| hli, 7, k] yli, J]

convolution is done with no padding in the depth dimension,
so at each “shift” a single output pixel is generated
23

USCViterbi

School of Engineering

CONV2D FILTERING IN DEEP LEARNING

Cvin
*
Hin *
*
*
Wi
{z[i,] * hi[d, 5]}
ZC[’I:,j, k] {hk[laj] kcilo_l — Hout

Wout
yli, J]
typically, h = w~3

functionally equivalent to previous slide 94

USCViterbi

School of Engineering

CONV2D FILTERING IN DEEP LEARNING

Cin C(out
* “as _
Hin —
Hout
Wi, Niters = Cout
o height
x|i, j, k]| X
width
input feature map X

channels

output feature map

Wo ut

Y|, 7, k]

25

USCViterbi

School of Engineering

CONV2D LAYER

filters biases
h 1x1
Cin (each 1x1) Cout
C(in
h Hout
w
Win Wout
Niilters = COUt Nyiases = Nfilters
.. this replaces: .o k
x|, J, k] yli, J, k]

y=Wx+b

input feature map output feature map

in MLPs — i.e., produces linear
activations

26

USCViterbi

School of Engineering

CONV2D LAYER IN PYTORCH

CLASS torxch.nn.Conv2d(in channels: int, out channels: int, kernel size: Union[T,
Tuple[T, T]], stride: Union[T, Tuple[T, T]] = 1, padding: Union[T, Tuple[T, T]] =

SOURCE]

&, dilation: Union[T, Tuple[T, T]] = 1, groups: int = 1, bias: bool = True,

padding_mode: str = 'zeros')

Applies a 2D convolution over an input signal compaosed of several input planes.

nn.Convz2d (3, 32, 3, padding: [1])

32 filters, each (H,W,C) = (H,W,D) = (3,3,C;,,)

Cin 1
out(Nj, Cout;) = bias(Coys,) + Z weight(Coyt, , k) * input(Nj, k)
k=0

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d

USCViterbi

School of Engineering

CONV2D LAYER IN PYTORCH

nn.Conv2d (16, 32, 3, padding:[1])

filters biases
(each 1x1)
Cin Cout
C(in
. * + o000 ..o =
1n h
w Hout
W,
Win 32 filters 32 biases out

32 output
channels

assume padding=“same” and:) o)
input activations (IFM size): 16*64*64 = 65,536

Cout = 32
C,t — 16 output activations (OFM size): 32*64*64 = 131,072
H;, =64 filter weights/coefficients: 32*(3*3*16) = 4,608
Win = 64 biases: 32
h=w=3

Total trainable parameters in this Conv2D: 4,640

USCViterbi

School of Engineering

CONV2D LAYER IN PYTORCH

nn.Conv2d (16, 32, 3, padding:[1])

input activations (IFM size): 16%64*64 = 65,536
output activations (OFM size): 32%64*64 = 131,072

Total trainable parameters in this Conv2D: 4,640

how does this compare to a dense layer with
same number of input/output activations?

why does the Conv2D layer have some many
fewer trainable parameters? 29

USCViterbi

School of Engineering

PARAMETER REUSE IN CNNS

nn.Conv2d (16, 32, 3, padding:[1])

Total trainable parameters in this Conv2D: 4 640

Total trainable parameters for comparable dense layer: 8,590,065,664

parameters are reused!!

each filter is used many times over the input feature map

sparse connectivity
output (i, j) depend only on inputs in neighborhood of (i,)

“Positive” View: CNNs have fewer parameters than MLPs with same number of activations

“Negative” View: CNNs do more computations per trainable parameter 30

USCViterbi

School of Engineering

TWO KEY CNN CONCEPTS

Localized features in the inputs

(e.g., natural images)

Parameter Reuse

(e.q., filter is used many times over input feature map)

31

USCViterbi

School of Engineering

OUTLINE FOR SLIDES

* Pooling and stride

» Fashion MNIST example

* Visualization methods

* Some common CNN structures

* Reduced complexity CNN architectures

* Outline of Back-propagation for CNNs

32

USC Viterbi
School of Engineering

POOLING AND
STRIDE

USCViterbi

School of Engineering

TYPICAL CNN STRUCTURES/PATTERNS

more channels as you go deeper

need some kind of “down-sampling”

doubling
number of
channels is

common

34

USCViterbi

School of Engineering

DOWN-SAMPLING: STRIDE > 1

Figure 2.7: (Arbitrary padding and strides) Convolving a 3 x 3 kernel over a
6 x 6 input padded with a 1 x 1 border of zeros using 2 x 2 strides (i.e., ¢ = 6,

k=3,s=2and p=1). In this case, the bottom row and right column of the
zero nadded input are not covered bv the kernel.

convolution, but the stride is >1

reduces H, W

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning.” arXiv preprint arXiv:1603.07285 (2016). 35

USCViterbi

School of Engineering

DOWN-SAMPLING: AVERAGE POOLING

. . . average pooling
layer

Figure 1.5: Computing the output values of a 3 x 3 average pooling operation
on a 5 X H input using 1 x 1 strides.

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning.” arXiv preprint arXiv:1603.07285 (2016). 36

USCViterbi

School of Engineering

DOWN-SAMPLING: MAX POOLING

. - . reduces H, W

Figure 1.6: Computing the output values of a 3 x 3 max pooling operation on
a b x H input using 1 x 1 strides.

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning.” arXiv preprint arXiv:1603.07285 (2016). 37

USCViterbi

School of Engineering

MAX POOLING EXAMPLE — KERNEL SIZE = (2,2)

import numpy as np
import torch
import torch.nn as nn

Lt fad e

layer = nn.MaxPool2d(2)

ohn WA

test input = torch.tensor(np.arange(188).reshape((1, 1, 18, 18)).astype(float))
test_output = layer(test_input)

o I Y e R s

18 print(test_input)
11 print(test_output)

tensor{[[[.
14,, 15.0,116., 17}, |118., 12.1],
22., 23.,124., 5., |28., 27.,|28., 24.(],
36., 37 128., 38.1],
42., 43.|,144., 45.),|46., 47.,|48., 49.]],
» Js 2 Js 55.i S/.LL58., 52.0],
2., 63.,]64., 65.,]66., 67.,|68., 69.]],
?2.i FER P ?4.| o170, FALL7E., T2,
g2., 83.,184., 85.|85., S?.r 88., B0.],
. Jo152., 930,084, 950, 1%6., 97 L 198., e2.0]1]1]],
dtype=torch.floaté4)
tensor([[[[11., 13., 15., 17., 19.]
[31., 33., 35., 37., 39.]
[51., 53., 55., 57., 59.],
]
]

[71., 73., 75., 77., 79.

[91., 93., 85., 97., 99.]]1]1], dtype=torch.floats4d)

38

USCViterbi

School of Engineering

DOWN-SAMPLING IN PYTORCH

dilation is
“spreading” the
2D kernel values
over larger filed
of view

default strides

for max/avg pooling

is kernel_size

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

nn.Conv2d (

in channels: int, out_ channels: int,
kernel size: Union[T, Tuple[T, T]],
stride: Union[T, Tuple[T, T]] =1

/
padding: Union[T, Tuple[T, T]] = O,
dilation: Union[T, Tuplel[T, T]] = 1,
padding mode: str = 'zeros’,

groups: int = 1, bias: bool = True

https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html

nn.AvgPool2d (
kernel size = (2,2),
padding = (1,1)

39

USCViterbi

School of Engineering

DILATION IN CONV2D

D

Figure 5.1: (Dilated convolution) Convolving a 3 x 3 kernel over a 7 x 7 input
with a dilation factor of 2 (i.e., i =7, k=3,d=2,s=1 and p = 0).

nn.Conv2d(dilation: n)

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning.” arXiv preprint arXiv:1603.07285 (2016). 40

USCViterbi

School of Engineering

OUTLINE FOR SLIDES

» Fashion MNIST example

* Visualization methods

* Some common CNN structures

* Reduced complexity CNN architectures

* Outline of Back-propagation for CNNs

41

USC Viterbi

School of Engineering

EXAMPLE

USCViterbi

School of Engineering

LET’S JUMP IN... PYTORCH

Layer (type) Output Shape Param #

conv2d (Conv2D) (None, 28, 28, 32) 320

activation (Activation) (None, 28, 28, 32) 0

batch_normalization (BatchNo (None, 28, 28, 32) 128

conv2d_1 (Conv2D) (None, 28, 28, 32) 9248

activation_1 (Activation) (None, 28, 28, 32) 0

batch_normalization_1 (Batch (None, 28, 28, 32) 128

max_pooling2d (MaxPooling2D) (None, 14, 14, 32) 0

dropout (Dropout) (None, 14, 14, 32) 0

conv2d_2 (Conv2D) (None, 14, 14, 64) 18496

activation_2 (Activation) (None, 14, 14, 64) 0

batch_normalization_2 (Batch (None, 14, 14, 64) 256

conv2d_3 (Conv2D) (None, 14, 14, 64) 36928

activation_3 (Activation) (None, 14, 14, 64) 0

batch_normalization_3 (Batch (None, 14, 14, 64) 256

max_pooling2d_1 (MaxPooling2 (None, 7, 7, 64) 0
dropout_1 (Dropout) (None, 7, 7, 64) 0
flatten (Flatten) (None, 3136) 0

dense (Dense) (None, 512) 1606144
activation_4 (Activation) (None, 512) 0
batch_normalization_4 (Batch (None, 512) 2048
dropout_2 (Dropout) (None, 512) 0
dense_1 (Dense) (None, 10) 5130
activation_5 (Activation) (None, 10) 0

Total params: 1,679,082
Trainable params: 1,677,674
Non-trainable params: 1,408

fmnist_cnn.py

This achieves ~ 93.5% accuracy

on Fashion MNSIT

PO T [T
FE——
I ey | 17355,

I |
e rEEEn|

N

g [T

g | 7,14, 14,64
b mormalization 2 BalchNormalizatrn [~ o
ouput: | (141 68

Ciopwr [131460
—p—

g | (2, 14, 14, 64
b ormalizaion._% BaichNormalizaion |- * .
outputs | 7,14, 14,68

oo oo
PN

e e[
e |

i [10y
activation_5: Activation o ‘
auput: | (2, 10)

43

USCViterbi

School of Engineering

LET’S JUMP IN... PYTORCH

CNN

MLP

USCViterbi

School of Engineering

THIS IS A TYPICAL BLOCK-BASED CNN PATTERN

CNN building block

CNN Classifier

conv2D (n-filters, 3x3)
batch norm

conv2D (n-filters, 3x3)
batch norm

max pool (2,2)
dropout (0.25)

block
(size n)

block
(size 32)
v feature extraction
block network
(size 64)
\J
flatten
dense (512) classifier
dropout (0.5) network
dense (10)

l

45

USCViterbi

School of Engineering

OUTLINE FOR SLIDES

e Visualization methods
« Some common CNN structures
* Reduced complexity CNN architectures

* Outline of Back-propagation for CNNs

46

USC V1terb1

School of Engine

VISUALIZATION

USCViterbi

School of Engineering

DOGS VS. CATS @&

718 - Ken. 15
Cattledog -1 yr

48

USCViterbi

School of Engineering

DOGS VS. CATS @

Dataset available here

https://www.kaggle.com/c/dogs-vs-cats

let’s explore a simple CNN and see if we can get some
insight into what the filters are looking for and how they
respond to a given input image

49

https://www.kaggle.com/c/dogs-vs-cats

USCViterbi

School of Engineering

DOGS-V-CATS: CATS AND DOGS - CNN.IPYNB

Layer (type) Output Shape Param #
Conv2d-1 [-1, 32, 150, 150] 896
Conv2d-2 [-1, 64, 150, 150] 18,496

MaxPool2d-3 [-1, 64, 75, 75] 0

Conv2d-4 [-1, 128, 75, 75] 73,856
Conv2d-5 [-1, 128, 75, 75] 147,584
MaxPool2d-6 [-1, 128, 37, 37] 0
Conv2d-7 [-1, 256, 37, 37] 295,168
Conv2d-8 [-1,512,37,37] 1,180,160
MaxPool2d-9 [-1,512, 18, 18] 0
Conv2d-10 [-1,512,18,18] 2,359,808
Conv2d-11 [-1,512,18,18] 2,359,808

MaxPool2d-12 [-1,512, 8, 8] 0

Dropout2d-13 [-1,32768] 0
Linear-14 [-1,512] 16,777,728
Linear-15 [-1, 1] 513

Total params: 23,214,017
Trainable params: 23,214,017

Non-trainable params: 0

50

USCViterbi

School of Engineering

DOGS-V-CATS: VISUALIZING CNN FEATURE MAPS

train samples

ol
o __ e S input image

1st conv2D

conv2d

0 500 1000 1500 2000

2nd conv2D

conv2d_1

0 200 400 600 800 1000

USCViterbi

School of Engineering

DOGS-V-CATS: VISUALIZING CNN FEATURE MAPS

3rd conv2D

conv2d_2

100
150
200

0

0 200 400 600 800 1000

52

USCViterbi

School of Engineering

DOGS-V-CATS: VISUALIZING CNN FEATURE MAPS

4th conv2D

conv2d_3

r Sy

100

120

140

0 100 200 300 400 500

53

USCViterbi

School of Engineering

DOGS-V-CATS: MAX FILTER RESPONSE

train an input image so that it maximizes
the output energy in a particular filter

Cats and Dogs - viz.ipynb

20 20

100 100 100

120 120 120

140 140 140

s 100 125 75 100 125

75 100 125

channel 16 channel 71 channel 121

[(?, 150, 150, 3)]

conv2d_input: InputLayer

[(?, 150, 150, 3)]

(7,148,148, 32)

output: (7,74,74,32)

input: | (2,72,72,64)

output: | (2,36, 36,64)

input: | (2,34,34,128)

max_pooling2d_2: Maﬁﬂm’ iﬁ 128)

(2,17,17,128)

(2,15,15,128)

input: | (2,15, 15,128)

max_pooling2d_3: MaxPooling2D

output: (2,7,7,128)

(2,7,7,128)

(2,6272)

(7,6272)

(7,6272)

(2,6272)

(2,512)

(2,512)

&0

54

USCViterbi

School of Engineering

CNN VISUALIZATION: GRAD-CAM
Gradient Weighted Class Activation Mapping

Boxer: 0.4 Cat: 0.2 Airliner: 0.9999 Boxer: 1.1e-20
(a) Original image (b) Adversarial image (C) Grad-CAM “Dog”

Tiger Cat: 6.5e-17 Airliner: 0.9999 Space shuttle: le-5
(d) Grad-cam “car” (€) Grad-CAM “Airliner” (f) Grad-cAM “Space Shuttle”

pyimagesearch tutorial (keras)

demo
https://github.com/kazuto1011/grad-cam-pytorch

Patch
10x10 15x15 25x25 35x35 45x45

size

“boxer"
sensitivity

90x90
e AR 2 YR BE

. 2
mastiff” 5 § 9
sensitivity 5 ‘. v . X‘
“tiger f. } ‘. " ’q i
Cat“ X 4 . < ?
sensitivity TN »"* & e 4

see where a layer is “looking” for a given class

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-based localization." 55

Proceedings of the IEEE international conference on computer vision. 2017.

https://github.com/kazuto1011/grad-cam-pytorch

USCViterbi

School of Engineering

OUTLINE FOR SLIDES

Some common CNN structures

Reduced complexity CNN architectures

Outline of Back-propagation for CNNs

56

USC Viterbi
School of Engineering

BLOCK
STRUCTURES

USCViterbi

School of Engineering

CNNS: USE WHEN FEATURE INFORMATION IS LOCALIZED

ImageNet Large Scale Visual Recognition Challenge results

In the competition’s first year
I— teams had varying success.
Every team got at least 25%
wrong.

In 2012, the team to first use
deep learning was the only
50 team to get their error rate
below 25%.

The following year
nearly every team got
25% or fewer wrong.

¢]
o]
In 2017, 29 of 38
teams got less than
5% wrong.
o
o]

o
b o

2012: AlexNet

2014: VGG

2015: Inception (aka GooglLeNet)

2015 ResNet

The leap that transformed Al research—
and possibly the world 58

USCViterbi

School of Engineering

RECEPTIVE FIELD AS WE GO DEEPER

deeper in the network, each pixel in
the feature map can “see” more of
the input image

XN\

;:\

reason why height and width of the
feature map can be reduced as we
go deeper

N\

1
1

~

NN N NN

N\

Lin, Haoning, Zhenwei Shi, and Zhengxia Zou. "Maritime semantic labeling of optical remote sensing images with multi-
scale fully convolutional network.” Remote sensing 9.5 (2017): 480. 59

USCViterbi

School of Engineering

RECEPTIVE FIELD AS WE GO DEEPER

simple script to find input pixels that can affect output pixels for a
specific CNN architecture (pytorch-receptive-field)

receptive_field_dict = receptive_field(model, (3, 256, 256))

class Net(nn.Module): receptive_field_for_unit(receptive_field_dict, '2’, (2,2))

def __init__(self):
super(Net, self).__init__()
self.conv = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)

self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

def forward(self, x):

y = self.conv(x)
Layer (type) mapsize start jump receptive_field

y = self.bn(y)

y = self.relu(y) 0 [256, 256] 0.5 1.0 1.0

y = self.maxpool(y) 1 [128, 128] 0.5 2.0 7.0
2 [128, 128] 0.5 2.0 7.0

returny 3 [128,128] 05 2.0 7.0
4 [64, 64] 0.5 4.0 11.0

Receptive field size for layer 2, unit_position (1, 1), is
[(0, 6.0), (0, 6.0)]

Lin, Haoning, Zhenwei Shi, and Zhengxia Zou. "Maritime semantic labeling of optical remote sensing images with multi-
scale fully convolutional network.” Remote sensing 9.5 (2017): 480.

60

USCViterbi

School of Engineering

RECEPTIVE FIELD AS WE GO DEEPER

simple script to find input pixels that can affect output pixels for a
specific CNN architecture

inverse image

A

receptive field

this could also be computed by hand
by book-keeping the inverse image of
each conv2D and pool layer

61

USCViterbi

School of Engineering

There are pretrained ImageNet models in PyTorch
(“model-z00”)
import torchvision.models as models Model Size Top-1 Accuracy Top-5 Accuracy Parameters Depth
resnetl8 = models.resnetl8(pretrained=True) Xception 88 MB 0.790 0.945 22,910,480 126
alexnet = models.alexnet (pretrained=True) VGG16 528 MB 0.713 0.901 138,357,544 23
sgueezenset = models.sgueezenstl B(pretrained=True) VGG19 549 MB 0.713 0.900 143,667,240 26
szl = rrreleoninls TmEamLtaisI oy ResNet50 98 MB 0.749 0.921 25,636,712 -
densenet = models.densenetl6l (pretrained=True) ResNet101 171 MB 0.764 0.928 44,707,176 _
inception = models.incep‘tion_{vB{pre‘ufrained:TIue} ResNet152 232 MB 0.766 0.931 60,419,944 B
googlenet = models.googlenet(pretrained=True)
shufflenset = models.shufflenet_v2_x1_0(pretrained=True) ResNet50V2 98 MB 0.760 0.930 25’613'800 -
mobilenet = models.mobilenet_v2{pretrained=True) ResNet101V2 171 MB 0.772 0.938 44,675,560 -
resnext50_32x4d = models.resnext50_32x4d(pretrained=True) ResNet152Vv2 232 MB 0.780 0.942 60,380,648 -
wide_resnet5@_2 = models.wide_resnet50_2(pretrained=True) |ncepﬁonv3 92 MB 0.779 0.937 23,851,784 159
LEE0EE S pilzlsoiimerEl L CEEOEInEIsIE InceptionResNetV2 215 MB 0.803 0.953 55,873,736 572
MobileNet 16 MB 0.704 0.895 4,253,864 88
MobileNetV2 14 MB 0.713 0901 3,538,984 88
DenseNet121 33MB 0.750 0.923 8,062,504 121
DenseNet169 57 MB 0.762 0.932 14,307,880 169
DenseNet201 80 MB 0.773 0.936 20,242,984 201
NASNetMobile 23 MB 0.744 0.919 5,326,716 o
NASNetLarge 343 MB 0.825 0.960 88,949,818 -
The top-1 and top-5 accuracy refers to the model's performance on the ImageNet validation
dataset.
https://pytorch.org/docs/stable/torchvision/models.html 62

School of Engineering

COMMON CNN ARCHITECTURE PATTERNS - VGG16

USCViterbi

(tousbewl 1o} 000L) N

!

(IN) esusp

A

9607

(9601) @susp

A

960t

(960t) esusp

A

8805¢

uspey

cLs L.

(2‘2) 100d xew

N8y ‘(€Xe ‘21S) AgAuod

n7eY ‘(€Xg ‘Z1S) AgAUoD

ney ‘(exg ‘2LS) gagauoo

A

2LS ‘vl ‘vl

(2‘2) 100d xew

N8y ‘(€Xe ‘21S) agAuod

n1ey ‘(exg ‘¢1S) agauoo

n7eY ‘(exg ‘2LS) ggAuod

A

9G¢ ‘8¢ ‘'8¢

(2°2) |100d xew

N8y ‘(€Xe ‘'9G2) AgAuod

neY ‘(exe ‘9Gg) aeauod

neY ‘(exe ‘9Gg) agauod

A

8¢l ‘95 9S

(2'2) j00d xew

N8y ‘(exe ‘8e k) AgAuod

nTeY ‘(exg ‘gz k) agauod

A

9 CHL CLL

(2'2) |100d xew

N8y ‘(EXg ‘#9) QgAuoo

neY ‘(exe ‘¢9) agauod

€ ‘vee ‘vee H

63

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale

image recognition.” arXiv preprint arXiv:1409.1556 (2014).

USCViterbi

School of Engineering

COMMON CNN ARCHITECTURE PATTERNS — RESNET(S)

residual connections:

aid in gradient flow
(reduce vanishing
gradient)

weight layer
F(x) L relu

weight layer

X

identity

allow learning of

Figure 2. Residual learning: a building block. alternative™ networks

— e.g., can learn to bypass
the two “weight layers” in
this figure

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). 64

School of Engineering

USCViterbi

COMMON CNN ARCHITECTURE PATTERNS — RESNET(S)

0007 24

ResNet34

[000T %)] [0007 2 [960 2]
£ £ A
|ood Sae |ood Sae 9601 2}
A A
zrs ‘Mo gxg | [715 nuooexe
A A
s ‘Auoo exe | [z1s'auoo exe
A
z1s ‘nuodexe | | z1s‘nuod exe
A A
z1s ‘uodexe | | z1s‘Auod exe
........... £
S| usuoexe | | 1S ‘auo exe
A A A
e ¥ uswoexe | | @/ 'e1s ‘Auod exg 2/ ‘|ood
......... A A
95z ‘nuod exg | | 9sz ‘auoo exe
4 A
95z ‘Muod exe | | 9sz ‘auoo exe
A
95z ‘nuoaexe | | 95z ‘Auoo exe
A A
95z ‘nuoa exe | | 95z ‘Auoo exe
A
95z ‘Muod exg | | 9sz ‘auoo exe
A A
95z ‘Muod exg | | 95z ‘auoo exe
A
957 ‘Muol gxg | | 95z ‘Auooexe
A A
957 ‘nuo gxg | | 95z ‘Auooexe | zrsauooexg |
A A
gsz ‘Auoexg | | 95z ‘nuoogxe | zrs‘huoexe |
A A A
g5z ‘nuodexe | [osz'nuooexe [Tsmuoee |
e 7y 7y
o [eszimuooexe | | 95z ‘auo exe [zistuooexe |
A) £ 3
..... _ 7/ ‘95 ‘AU0D EXE _ _ 2/ ‘95¢ ‘Au0d EXE z/ 'lood
el yY
871 ‘MU0 Exg | | 8z ‘oo gxg
A A
8z1 ‘Ao exg | | 8z ‘Auod exe
A
[Tezmrumexe | | 8er ‘Auod exe
A A
| serauooexe | | 81 ‘auod exe | ersuoexe |
A A
EACE | 821 ‘Auod gxe | zis'nuooexe |
4 A A
871 ‘Muod exe | | sz ‘auoo exe | zis‘auooexe |
.- 4 4
| ger'auooexe | | et ‘Auooexe | ersumexe |
A A A r'y
S | #sarauorexe | | z/'sz1 'nuooexe Z/'|ood
......... A
9 ‘AUDD £XE _ _ 9 ‘AU £XE
A A
$9 ‘AUDD £XE _ _ 9 ‘AUOD EXE
A
9 ‘AUDD EXE _ _ 9 ‘AUOD EXE _ 957 ‘AUOD EXE _
A A A
9 AUDD EXE _ _ 9 ‘AUOD EXE _ 957 ‘AUOD EXE _
A A
9 AUDD EXE _ _ 9 ‘AUDD EXE _ 967 ‘AUQD EXE _
A A A
_ 9 ‘AUDD EXE _ _ 9 ‘AUDD EXE _ 957 ‘AUCD EXE _
A A
z/ jood z/ ‘lood z/ ‘Jood
A A A

_ 7/ %9 ‘AU0d /x/

7/ 79 ‘AUOD /X[

[szravorexe |

afew

|enpisal Jahe|-€

afewn

uie|d JaAe|-y€

8ZT ‘AUOD EXE

z/ ‘lood

#9 ‘AUOD EXE

adew

6T-D9OA

13218
ndino

£ 225
ndino

1 19218
ndino

87 19215
indino

gg :azIs
indino

TIT @2s
ndino

ez eus
indino

65

., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

K

)

He

USCViterbi

School of Engineering

COMMON CNN ARCHITECTURE PATTERNS — RESNET(S)

method top-1 err. top-35 err.
VGG [41] (ILSVRC’14) - 8.43"
GoogLeNet [44] (ILSVRC’ 14) - 7.89
VGG [41] (v5) 24.4 7.1 Note:
PReL.U-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81 there are v2
ResNet-34 B 21.84 5.71 versions of
ResNet-34 C 21.53 5.60 these
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet

validation set (except f reported on the test set).

Proceccings of the IEEE conference on computer vision and patters recogniiion (op. 770.778) 66

USCViterbi

School of Engineering

COMMON CNN ARCHITECTURE PATTERNS - INCEPTION

aka GoogleNet

g«wwu':‘li 1060

DEEPER _

1e1+1(5)

v
1x1+1(5)

—

 softmaxi

= &
= - N
25 / B H
E 34 3
= = A z G - -
H B \ o5 2 g
23 = T el)
EE BE m m BT B E g
UE L ,9- > 8 g o ~ £ . - 2
/ e ET 2 [8%
/ BRY B £ = = £ #]
= = Ei £l 4 @ a ¥
@ 7 & 2] 8
=i . -
EE EE & o BE]
oy B z A 5 -
H E &

Conv
1x1+1(5)

S

(Ceotmaz]
o
4
[y—
5
p
1x1+1(5) 1
Depthcon
Con
1+1(5)
Depthc

\
Conv
x1+1(5 X1+
\h

AN

1x1 convolutions

Qtions

/’:—V/———'

Filter
concatenation

_—7

3x3 convolutions

5x5 convolutions

1x1 convolutions

[)

)

1x1 convolutions

Previous layer

]

3x3 max pooling

(b) Inception module with dimensionality reduction

MaxPool

3x3+145)

Canv
161+ 1(5})
/

Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference

on computer vision and pattern recognition. 2015.

Conv
Qﬂrsr

DepthCancat

Cony
1x1+1(5)

1B

Conv.
161411V}

E
a |

67

USCViterbi

School of Engineering

USING FIXED CNN LAYERS FOR A DIFFERENT CV TASK
T T !

(donss,rained — .. cassifer notwork e
on imagnet) dataset)

! ! !

retrain
prep for classier
retrain

; layers
feature extraction feature extraction feature extraction
(CNN layers trained —

e.g., on imagenet) trained and frozen trained and frozen

| | |

features needed for many CV tasks are similar to Imagenet classification features

you can reuse all or part of the feature extraction network

import torchvision.models as models

model = models.resnet50 (pretrained=True)
68

USCViterbi

School of Engineering

ONE LAST LAYER TYPE: GLOBAL POOLING

torch.nn.MaxPool2d (kernel_ size=image_ size)

torch.nn.AvgPool2d (kernel size=image size)

follow with: x.squeeze ()

Input: 4D tensor with shape (batch_size, rows, cols, channels)

Output: 2D tensor with shape (batch_size, channels)

this is used after the last conv2D/pool layer before the
“flatten” in many recent models

reduces the complexity of the dense classification network
without sacrificing performance ‘o

USCViterbi

School of Engineering

OUTLINE FOR SLIDES

* Reduced complexity CNN architectures

* Outline of Back-propagation for CNNs

70

USC Viterbi
School of Engineering

REDUCING
COMPLEXITY

USCViterbi

School of Engineering

REDUCED PARAMETER/COMPUTATION APPROACHES

For larger CNNs, the number of parameters is so large, that
storage complexity becomes a significant issue

this is an issue for running these models in inference mode on mobile devices

computational complexity (during inference and training)
is also an issue

72

USCViterbi

School of Engineering

REDUCED PARAMETER/COMPUTATION APPROACHES

Two primary methods:

constrained filter structures: alter the standard conv2D
operations to lower the computational/storage complexity

post-training processing to reduce complexity

73

USCViterbi

School of Engineering

CONSTRAINED FILTERING: DEPTH-WISE CONVOLUTION

only do convolution separately for channels
— i.e., no information is mixed across channels

74

USCViterbi

School of Engineering

CONSTRAINED FILTERING: GROUPWISE CONVOLUTION

trade-off between standard conv2D filtering and
depth-wise filtering

use more of these grouped-filters to get more
output channels

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural
networks.” Advances in neural information processing systems. 2012. 75

USCViterbi

School of Engineering

CONSTRAINED FILTERING: POINTWISE CONVOLUTION

lxGCm

standard Conv2D with filter size 1x1

a.k.a., 1x1 convolution

76

USCViterbi

School of Engineering

EXAMPLE: MOBILENET

&MY -

Nﬁlters = COUT.

combine depth-wise convolution with many 1x1 convolutions

compare with standard Conv2D:

C‘out = 32
Ci = 16 16, 3x3 depth-wise kernels: 144
Hi, = 64 32, 1x1 point-wise filters: 512
Win = 64 32, biases: 32
h=w=3

Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications.” arXiv preprint arXiv:1704.04861 (2017).

Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks."” Proceedings of the IEEE conference on 77
computer vision and pattern recognition. 2018.

USC Viterbi

School of Engineering

EXAMPLE: SHUFFLENET

wo- O

multiple grouped convolutions shuffle across channels

group-wise convolutions with shuffling

Zhang, Xiangyu, et al. "Shufflenet: An extremely efficient convolutional neural network for mobile devices."” Proceedings
of the IEEE conference on computer vision and pattern recognition. 2018. APA 78

USCViterbi

School of Engineering

EXAMPLE: PRE-DEFINED SPARSITY

M pSConv
_— kernels OFM
S~ (iE e
: | ﬂ IHO
~N ¢ P
\ R

[and WMare non-zero weight locations of 3D

filters K;, K; and Kc,, respectively

pre-define some of the filter coefficients to be zero and

hold fixed through training and inference

targets specialized hardware acceleration — project concept is to map this to GPU

Kundu, Souvik, et al. "Pre-defined Sparsity for Low-Complexity Convolutional Neural Networks." IEEE Transactions on Computers (2020).

USCViterbi

School of Engineering

EXAMPLE: PRE-DEFINED SPARSITY

0.11

60
92 0.400
~ 3 5
S o1 0.10 o's8 0373
< & < & 0350
< %0 O 0.09 g 56 Q 0325
é) < = 0300
< s R 0.08 - 4 0275
s 88 © 0.07 8‘;2 S 0.250
= ' = 0225
87 0.06 50 0.200 . 5
2‘7 L OL 2L 3 g Lo 2L 2 2'17 L L L Q2 PN ,f L] 5
T 3 o~ 5 S T 3 N85 S T & & oS & £ oae
8 < Q SQ ~ ’S = Q S S & < QL o~ b= 03} Ql Q % Q
5 9 5 Q5 5 o QR &« K 5 L Qs R S =2 5 &) &
§ § 5 £ 5 7 § 5 &5 &£ 5 £ 5§ § & 58 2 £ §F & & 5 2 &
=] By /
S 2 o 2 S 2 o 2 S o 2§ = S o T F o
§&8§F @ § &8 & s g ® &~ &
g X & s g 5 & S = <& P &

Fig. 11: Performance comparison of our proposed architectures that have similar or fewer FLOPs than ShuffleNet and
MobileNetV2 with comparable or better classification accuracy on (a) CIFAR-10 and (b) Tiny ImageNet.

—as @ —y4s

a0 E“-O
35
L 30 L
g7 g 25
[~ Xi] (=]

Fig. 12: Comparison of the number of model parameters of the
network models described in Fig 11 for (a) CIFAR-10 and (b)
Tiny ImageNet datasets.

Kundu, Souvik, et al. "Pre-defined Sparsity for Low-Complexity Convolutional Neural Networks." IEEE Transactions on Computers (2020). 80

USCViterbi

School of Engineering

POST-TRAINING APPROACHES

post-training processing to minimize complexity

Pruning: set near-zero weights to zero, fix these and do some retraining

Quantization: map similar valued weights to the same value to save storage

Binaryization: find a set of binary weights that best approximate
the trained network behavior

81

USCViterbi

School of Engineering

OUTLINE FOR SLIDES

Back-propagation for CNNs

82

USC Viterbi
School of Engineering

CNN BACK
PROPAGATION

USCViterbi

School of Engineering

BACK-PROPAGATION IN CNNS

recall the definition of a standard Conv2D operation:

yli,j, k] = Z Z helm,nlx[i + m,j +n,c]

c (mn)

h¢ x[m,n] = 2D kernel for input channel ¢, output channel k

chain rule:
ac B z ayli',j' k'] aCc
ox[i,j, k]~ Za ox[i,j k] oyli',j' k']
G’y k"

which values of h are involved here?

shorthand: /

o aC . oyli",j" KT ., ., .,
av[l,],k] é m ax[l:]: k] é Z [ax[l] k] _’y[l ;] ,k]

@'k

84

USCViterbi

School of Engineering

BACK-PROPAGATION IN CNNS

Let’s start with the 2D convolution only...

yli',j'l = z him,n]x[i" + m,j" + n]

(m,n)

- z h[s —i',t — j']x[s, t]

(s,t)
ay[i',j']
o.li,7] = S.Ti' i’
i] L 0x[i,] T
@.j"
chain-rule term:
oyl 6clijl=) hli=i'j—j'1xl",)']
= hli— i = /] ayD

0x[i,j]

(m,n) 85

USCViterbi

School of Engineering

BACK-PROPAGATION IN CNNS

yli,jl = z him,n]x[i + m,j + n] forward: convolve with h[i,]
(m,n)
O, li, j] = z h[-m,—n]6y[i + m,j +n] back-prop: convolve with h[—i, —J]
(m,n)
.o 1 .
x(i, j] yli, j]
— 4 |5| 6 /™
9 forward: convolve with h[i, j]
recall: W-transpose in MLP-BP
80 = 3@ [(W(l+1))T8(l+1)]
07, j] S dylt, 7]
< 4 |«
3 2 1 back-prop: convolve with h[—i, —j]

86

USCViterbi

School of Engineering

BACK-PROPAGATION IN CNNS

standard 2DConv with
reflected 2D kernels

this extends to the standard Conv2D convolution

yli',j', k'] zzhkkmn] [i" +m,j" +n, k]

k (mn)
. ayli",j k'l . ., ., .,
8.0, 7, k] = Z ox[L,], K] &, li',j' k']
G/ k") e
ayli',j', k']

ax[l,],k] = hk,k’[l_l ’] _]]

5.1, k] = Z he i —i'j — 18, [, ", k']
@

— z hy ' [=m, —n]é,[i + m,j + n, k]
(mmnk'")

87

USCViterbi

School of Engineering

BACK-PROPAGATION IN CNNS: POOLING

average pooling:

results from standard
differentiation

forward: Q “pixels” averaged

back-prop: 1/Q times the gradient flows back through theses Q “pixels”

non-differentiable....
just a convention that
works!

max pooling:

forward: max over Q “pixels” (i*,j*) ~ argmax

back-prop: gradient flows directly through (i*,j*) only

88

USCViterbi

School of Engineering

CNN/CV RELATED TOPICS

Image segmentation (e.g., U-Net)

Object Detection (e.g., YOLO)

GANs (e.g., “deep fakes”)

89

	Slide 1: Convolutional Neural Networks
	Slide 2: Outline for Slides
	Slide 3: ConvNets
	Slide 4: (Types of Neural Networks)
	Slide 5: CNNs are Widely Used, Especially in Vision Tasks
	Slide 6: CNNs are Widely Used, Especially in Vision Tasks
	Slide 7: CNNs are Widely Used, Especially in Vision Tasks
	Slide 8: CNNs: Use When Feature Information is Localized
	Slide 9: CNNs: Use When Feature Information is Localized
	Slide 10: CNNs: Changing What is Possible WITH CV
	Slide 11: CNNs: 1D, 2D, 3D
	Slide 12: Outline for Slides
	Slide 13: 2D Convolution
	Slide 14: 2D Convolution Operations
	Slide 15: 2D Convolution Operations
	Slide 16: 2D Convolution Operations
	Slide 17: Traditional 2D Image Filters
	Slide 18: 2D Convolution Operations — Padding
	Slide 19: 2D Convolution Operations — Padding
	Slide 20: Convolution operations — Padding with layers
	Slide 21: 2D Convolution Operations
	Slide 22: 3D Convolution
	Slide 23: Conv2D Filtering in Deep Learning
	Slide 24: Conv2D Filtering in Deep Learning
	Slide 25: Conv2D Filtering in Deep Learning
	Slide 26: Conv2D Layer
	Slide 27: Conv2D Layer in PyTorch
	Slide 28: Conv2D Layer in PyTorch
	Slide 29: Conv2D Layer in PyTorch
	Slide 30: Parameter Reuse in CNNs
	Slide 31: Two Key CNN Concepts
	Slide 32: Outline for Slides
	Slide 33: Pooling and Stride
	Slide 34: Typical CNN Structures/Patterns
	Slide 35: Down-Sampling: Stride > 1
	Slide 36: Down-Sampling: Average Pooling
	Slide 37: Down-Sampling: Max Pooling
	Slide 38: Max Pooling Example — kernel size = (2,2)
	Slide 39: Down-Sampling in PyTorch
	Slide 40: Dilation in Conv2d
	Slide 41: Outline for Slides
	Slide 42: Example
	Slide 43: Let’s Jump In… PyTorch
	Slide 44: Let’s Jump In… PyTorch
	Slide 45: This is a Typical Block-Based CNN Pattern
	Slide 46: Outline for Slides
	Slide 47: Visualization
	Slide 48: Dogs vs. Cats 😃
	Slide 49: Dogs vs. Cats 😃
	Slide 50: Dogs-v-Cats: Cats and Dogs – CNN.ipynb
	Slide 51: Dogs-v-Cats: Visualizing CNN Feature Maps
	Slide 52: Dogs-v-Cats: Visualizing CNN Feature Maps
	Slide 53: Dogs-v-Cats: Visualizing CNN Feature Maps
	Slide 54: Dogs-v-Cats: Max Filter Response
	Slide 55: CNN Visualization: Grad-CAM
	Slide 56: Outline for Slides
	Slide 57: Block Structures
	Slide 58: CNNs: Use When Feature Information is Localized
	Slide 59: Receptive Field as We Go Deeper
	Slide 60: Receptive Field as We Go Deeper
	Slide 61: Receptive Field as We Go Deeper
	Slide 62: Popular CNN Architectures/Patterns
	Slide 63: Common CNN Architecture Patterns - VGG16
	Slide 64: Common CNN Architecture Patterns – ResNet(s)
	Slide 65: Common CNN Architecture Patterns – ResNet(s)
	Slide 66: Common CNN Architecture Patterns – ResNet(s)
	Slide 67: Common CNN Architecture Patterns - Inception
	Slide 68: Using Fixed CNN Layers for a Different CV Task
	Slide 69: One Last Layer Type: Global Pooling
	Slide 70: Outline for Slides
	Slide 71: Reducing Complexity
	Slide 72: Reduced Parameter/Computation Approaches
	Slide 73: Reduced Parameter/Computation Approaches
	Slide 74: Constrained Filtering: Depth-wise Convolution
	Slide 75: Constrained Filtering: Groupwise Convolution
	Slide 76: Constrained Filtering: Pointwise Convolution
	Slide 77: Example: MobileNet
	Slide 78: Example: ShuffleNet
	Slide 79: Example: Pre-Defined Sparsity
	Slide 80: Example: Pre-Defined Sparsity
	Slide 81: Post-Training Approaches
	Slide 82: Outline for Slides
	Slide 83: CNN Back Propagation
	Slide 84: Back-propagation in CNNs
	Slide 85: Back-propagation in CNNs
	Slide 86: Back-propagation in CNNs
	Slide 87: Back-propagation in CNNs
	Slide 88: Back-propagation in CNNs: Pooling
	Slide 89: CNN/CV Related topics

