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OUTLINE FOR SLIDES

*  Motivation, applications

»  Basic 2D convolution operations

o PyTorch 2Dconv layer
* Pooling and stride
»  Fashion MNIST example
*  Visualization methods
«  Some common CNN structures
* Reduced complexity CNN architectures

*  Outline of Back-propagation for CNNs
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(TYPES OF NEURAL NETWORKYS)

Convolutional NNets

MLP layers

\\
.?«

(
.

convolutional max-pooling
layer

(sub-sampling)

Can view convolutions as feature extractors for MLP classifier
(this feature extraction is learned) 4
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USCViterbi

School of Engineering

CNNS ARE WIDELY USED, ESPECIALLY IN VISION TASKS

Pose estimation
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CNNS ARE WIDELY USED, ESPECIALLY IN VISION TASKS
Deep Fakes

https://thispersondoesnotexist.com https://thisxdoesnotexist.com/ 7
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CNNS: USE WHEN FEATURE INFORMATION IS LOCALIZED

Policy selection
frame: t-3 t-2 t-1 t

“enemy+diver’

Captioning

i train is traveling down the tracks at a = a bench sitting on a patch of grass next o

rain station a cake with a slice cut out of it a sidewalk
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frequency

CNNS:

does not need to be a “natural” image —
e.g., signal classification from spectrograms
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CNNS: CHANGING WHAT IS POSSIBLE WITH CV

ImageNet Large Scale Visual Recognition Challenge results

_é*f;thi?”‘y:tgl"t;;/ CNNs changed the game for
very team got at leas 6 o« o
wrong many computer vision tasks

In 2012, the team to first use
deep learning was the only
50 team to get their error rate
below 25%.

The following year

1
et e e The leap that transformed Al research—

25% or fewer wrong.

o and possibly the world

In 2017, 29 of 38
teams got less than
5% wrong.

10
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CNNS: 1D, 2D, 3D

there are 1D and 3D convolutional layers, but conv2D is most widely used

Figure 2: Visualization of a stack of causal convolutional layers.

1D Conv layers

Output

nadentayer 1D CNN ~ time series data
3D CNN ~ video data

Hidden Layer

Input

(recurrent networks are options too
and can be combined with conv)

Oord, Aaron van den, et al. "Wavenet: A generative model for raw audio.” arXiv preprint arXiv:1609.03499 (2016). 11
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OUTLINE FOR SLIDES

»  Basic 2D convolution operations

PyTorch 2Dconv layer
* Pooling and stride
»  Fashion MNIST example
*  Visualization methods
«  Some common CNN structures
* Reduced complexity CNN architectures

*  Outline of Back-propagation for CNNs
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2D CONVOLUTION OPERATIONS

2D convolution:

yli, 1 = x[i, 1 * hli,j] = Z Z [m, n]Ali —m,j —n]

mn_—

Z Z x[m,n]hli —m,j —n]

—Ln=-L

and 2D correlation:

yli,jl = x[i, j] * hli,j] = z 2x[mn]hz+m1+n]

m——oo Tl_—

— mZL nZLx[m, nlhli + m,j + n|

14
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2D CONVOLUTION OPERATIONS

Since we will be learning the 2D filter h[i, j] we can adapt a
correlation convention as “convolution”

(0 @) (0 0)

yli,jl = xl[i,j] * K[i,j] = Z ZKmn [i + m,j +n]

Mm=—00 N=—00

yli,j] = x[i, j] % K[i, j] = z K[m, nlx[i + m,j + n]
(m,n)esupp(K)

typically, the support region of the kernel is small —
e.g., 3x3 kernels are very common 15
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2D CONVOLUTION OPERATIONS

(-(1x3)+(0x0)+(1x1)+
(-2x2)+(0x6)+(2x2) +
(-(1x2)+(0x4)+(1x1) =-3

o
Aaranm)

Convolution filter

RN T

Destination pixel

This is what you learn!

o 0 g Kernel
56 | 139 | 85 -1 0 .
54 | 84 | 128 5 1
70 | 129 | 127 1 0

§

g

16
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TRADITIONAL 2D IMAGE FILTERS

2D filters are widely used in the field of image processing

White Grey Convolution b
5 5 5
5 5 5 . el
555000.*10 0 15 15 0O

1.0 —
: : : g g g} 1.0 i 15 15 Original Image

| 0 15 15 0 |
5 5 505050 ,,4"

White Grey Black
Grey

many computer vision tasks require many types filters to produce features

CNNs learn these filters from the dataset —
learn good feature extraction 17
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2D CONVOLUTION OPERATIONS — PADDING

no padding
empty padding in PyTorch

Figure 2.1: (No padding, no strides) Convolving a 3 x 3 kernel over a 4 x 4
input using unit strides (i.e., i =4, k =3, s =1 and p = 0).

;(
1Y |

symmetric padding

/ padding:[1 | [1,1]] in PyTorch

Figure 2.3: (Half padding, no strides) Convolving a 3 x 3 kernel over a 5 x 5
input using half padding and unit strides (i.e.,i =5, k=3,s=1and p=1).

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning.” arXiv preprint arXiv:1603.07285 (2016). 18
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2D CONVOLUTION OPERATIONS — PADDING

Figure 2.4: (Full padding, no strides) Convolving a 3 x 3 kernel over a 5 x 5
input using full padding and unit strides (i.e., i =5, k =3, s =1 and p = 2).

other padding conventions exist —
e.g., “full padding”

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning.” arXiv preprint arXiv:1603.07285 (2016). 19
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CONVOLUTION OPERATIONS — PADDING WITH LAYERS

Padding Layers

n

n.ReflectionPadld

1.ReflectionPad2d

n.ReplicationPadld

n.ReplicationPad2d

1.ReplicationPad3d

1.ZeroPad2d

n.ConstantPadild

Pads the input tensor using the reflection of the input
boundary.

Pads the input tensor using the reflection of the input
boundary.

Pads the input tensor using replication of the input
boundary.

Pads the input tensor using replication of the input
boundary.

Pads the input tensor using replication of the input
boundary.

Pads the input tensor boundaries with zero.

Pads the input tensor boundaries with a constant value.

Pads the input tensor boundaries with a constant value.

* replication
» reflection
* Z€ero

« constant

PyTorch padding
layers provide
greater control

20
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2D CONVOLUTION OPERATIONS

kernel

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning.” arXiv preprint arXiv:1603.07285 (2016).

21
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3D CONVOLUTION

yli,j, k] = x[i, j, k] * h[i, j, k] = z h[m,n, o]x[i +m,j + 1 k + 0]
(m,n,0)esupp(K)
x[i, j, k] yli, J, k]
hli, j, k]

“slide” h over and compute 3D dot
product for each output voxel

22
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CONV2D FILTERING IN DEEP LEARNING

C1ilr1
height
X
width * — Hout
X Hin h Cin
channels w
Wout
Wi
(i, 7, k| hli, 7, k] yli, J]

convolution is done with no padding in the depth dimension,
so at each “shift” a single output pixel is generated
23
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CONV2D FILTERING IN DEEP LEARNING

Cvin
*
Hin *
*
*
Wi
{z[i, ] * hi[d, 5]}
ZC[’I:,j, k] {hk[laj] kcilo_l — Hout

Wout
yli, J]
typically, h = w~3

functionally equivalent to previous slide 94
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CONV2D FILTERING IN DEEP LEARNING

Cin C(out
* “as _
Hin —
Hout
Wi, Niters = Cout
o height
x|i, j, k]| X
width
input feature map X

channels

output feature map

Wo ut

Y|, 7, k]

25
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CONV2D LAYER

filters biases
h 1x1
Cin (each 1x1) Cout
C(in
h Hout
w
Win Wout
Niilters = COUt Nyiases = Nfilters
.. this replaces: .o k
x|, J, k] yli, J, k]

y=Wx+b

input feature map output feature map

in MLPs — i.e., produces linear
activations

26
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CONV2D LAYER IN PYTORCH

CLASS torxch.nn.Conv2d(in channels: int, out channels: int, kernel size: Union[T,
Tuple[T, T]], stride: Union[T, Tuple[T, T]] = 1, padding: Union[T, Tuple[T, T]] =

SOURCE]

&, dilation: Union[T, Tuple[T, T]] = 1, groups: int = 1, bias: bool = True,

padding_mode: str = 'zeros')

Applies a 2D convolution over an input signal compaosed of several input planes.

nn.Convz2d (3, 32, 3, padding: [1])

32 filters, each (H,W,C) = (H,W,D) = (3,3,C;,,)

Cin 1
out(Nj, Cout; ) = bias(Coys, ) + Z weight(Coyt, , k) * input(Nj, k)
k=0

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d
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CONV2D LAYER IN PYTORCH

nn.Conv2d (16, 32, 3, padding:[1])

filters biases
(each 1x1)
Cin Cout
C(in
. * + o000 ..o =
1n h
w Hout
W,
Win 32 filters 32 biases out

32 output
channels

assume padding=“same” and: ) o )
input activations (IFM size): 16*64*64 = 65,536

Cout = 32
C,t — 16 output activations (OFM size): 32*64*64 = 131,072
H;, =64 filter weights/coefficients: 32*(3*3*16) = 4,608
Win = 64 biases: 32
h=w=3

Total trainable parameters in this Conv2D: 4,640
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CONV2D LAYER IN PYTORCH

nn.Conv2d (16, 32, 3, padding:[1])

input activations (IFM size): 16%64*64 = 65,536
output activations (OFM size): 32%64*64 = 131,072

Total trainable parameters in this Conv2D: 4,640

how does this compare to a dense layer with
same number of input/output activations?

why does the Conv2D layer have some many
fewer trainable parameters? 29
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PARAMETER REUSE IN CNNS

nn.Conv2d (16, 32, 3, padding:[1])

Total trainable parameters in this Conv2D: 4 640

Total trainable parameters for comparable dense layer: 8,590,065,664

parameters are reused!!

each filter is used many times over the input feature map

sparse connectivity
output (i, j) depend only on inputs in neighborhood of (i, )

“Positive” View: CNNs have fewer parameters than MLPs with same number of activations

“Negative” View: CNNs do more computations per trainable parameter 30
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TWO KEY CNN CONCEPTS

Localized features in the inputs

(e.g., natural images)

Parameter Reuse

(e.q., filter is used many times over input feature map)

31
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OUTLINE FOR SLIDES

* Pooling and stride

»  Fashion MNIST example

*  Visualization methods

*  Some common CNN structures

* Reduced complexity CNN architectures

*  Outline of Back-propagation for CNNs
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TYPICAL CNN STRUCTURES/PATTERNS

more channels as you go deeper

need some kind of “down-sampling”

doubling
number of
channels is

common

34
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DOWN-SAMPLING: STRIDE > 1

Figure 2.7: (Arbitrary padding and strides) Convolving a 3 x 3 kernel over a
6 x 6 input padded with a 1 x 1 border of zeros using 2 x 2 strides (i.e., ¢ = 6,

k=3,s=2and p=1). In this case, the bottom row and right column of the
zero nadded input are not covered bv the kernel.

convolution, but the stride is >1

reduces H, W

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning.” arXiv preprint arXiv:1603.07285 (2016). 35
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DOWN-SAMPLING: AVERAGE POOLING

. . . average pooling
layer

Figure 1.5: Computing the output values of a 3 x 3 average pooling operation
on a 5 X H input using 1 x 1 strides.

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning.” arXiv preprint arXiv:1603.07285 (2016). 36
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DOWN-SAMPLING: MAX POOLING

. - . reduces H, W

Figure 1.6: Computing the output values of a 3 x 3 max pooling operation on
a b x H input using 1 x 1 strides.

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning.” arXiv preprint arXiv:1603.07285 (2016). 37
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MAX POOLING EXAMPLE — KERNEL SIZE = (2,2)

import numpy as np
import torch
import torch.nn as nn

Lt fad e

layer = nn.MaxPool2d(2)

ohn WA

test input = torch.tensor(np.arange(188).reshape((1, 1, 18, 18)).astype(float))
test_output = layer(test_input)

o I Y e R s

18 print(test_input)
11 print(test_output)

tensor{[[[ . . . . .
14,, 15.0,116., 17}, |118., 12.1],
22., 23.,124., 5., |28., 27.,|28., 24.(],
36., 37 128., 38.1],
42., 43.|,144., 45.),|46., 47.,|48., 49.]],
» Js 2 Js 55.i S/.LL58., 52.0],
2., 63.,]64., 65.,]66., 67.,|68., 69.]],
?2.i FER P ?4.| o170, FALL7E., T2,
g2., 83.,184., 85.|85., S?.r 88., B0.],
. Jo152., 930,084, 950, 1%6., 97 L 198., e2.0]1]1]],
dtype=torch.floaté4)
tensor([[[[11., 13., 15., 17., 19.]
[31., 33., 35., 37., 39.]
[51., 53., 55., 57., 59.],
]
]

[71., 73., 75., 77., 79.

[91., 93., 85., 97., 99.]]1]1], dtype=torch.floats4d)

38
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DOWN-SAMPLING IN PYTORCH

dilation is
“spreading” the
2D kernel values
over larger filed
of view

default strides

for max/avg pooling

is kernel_size

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

nn.Conv2d (

in channels: int, out_ channels: int,
kernel size: Union[T, Tuple[T, T]],
stride: Union[T, Tuple[T, T]] =1

/
padding: Union[T, Tuple[T, T]] = O,
dilation: Union[T, Tuplel[T, T]] = 1,
padding mode: str = 'zeros’,

groups: int = 1, bias: bool = True

https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html

nn.AvgPool2d (
kernel size = (2,2),
padding = (1,1)

39
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DILATION IN CONV2D

D

Figure 5.1: (Dilated convolution) Convolving a 3 x 3 kernel over a 7 x 7 input
with a dilation factor of 2 (i.e., i =7, k=3,d=2,s=1 and p = 0).

nn.Conv2d(dilation: n)

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning.” arXiv preprint arXiv:1603.07285 (2016). 40
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OUTLINE FOR SLIDES

»  Fashion MNIST example

*  Visualization methods

*  Some common CNN structures

* Reduced complexity CNN architectures

*  Outline of Back-propagation for CNNs
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LET’S JUMP IN... PYTORCH

Layer (type) Output Shape Param #

conv2d (Conv2D) (None, 28, 28, 32) 320

activation (Activation) (None, 28, 28, 32) 0

batch_normalization (BatchNo (None, 28, 28, 32) 128

conv2d_1 (Conv2D) (None, 28, 28, 32) 9248

activation_1 (Activation) (None, 28, 28, 32) 0

batch_normalization_1 (Batch (None, 28, 28, 32) 128

max_pooling2d (MaxPooling2D) (None, 14, 14, 32) 0

dropout (Dropout) (None, 14, 14, 32) 0

conv2d_2 (Conv2D) (None, 14, 14, 64) 18496

activation_2 (Activation) (None, 14, 14, 64) 0

batch_normalization_2 (Batch (None, 14, 14, 64) 256

conv2d_3 (Conv2D) (None, 14, 14, 64) 36928

activation_3 (Activation) (None, 14, 14, 64) 0

batch_normalization_3 (Batch (None, 14, 14, 64) 256

max_pooling2d_1 (MaxPooling2 (None, 7, 7, 64) 0
dropout_1 (Dropout) (None, 7, 7, 64) 0
flatten (Flatten) (None, 3136) 0

dense (Dense) (None, 512) 1606144
activation_4 (Activation) (None, 512) 0
batch_normalization_4 (Batch (None, 512) 2048
dropout_2 (Dropout) (None, 512) 0
dense_1 (Dense) (None, 10) 5130
activation_5 (Activation) (None, 10) 0

Total params: 1,679,082
Trainable params: 1,677,674
Non-trainable params: 1,408

fmnist_cnn.py

This achieves ~ 93.5% accuracy

on Fashion MNSIT

PO T [T
FE——
I ey | 17355,

I |
e rEEEn|

N

g [ T

g | 7,14, 14,64
b mormalization 2 BalchNormalizatrn [~ o
ouput: | (141 68

Ciopwr [ 131460
—p—

g | (2, 14, 14, 64
b ormalizaion._% BaichNormalizaion |- * .
outputs | 7,14, 14,68

oo oo
PN

e e[
e |

i [ 10y
activation_5: Activation o ‘
auput: | (2, 10)
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LET’S JUMP IN... PYTORCH

CNN

MLP
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THIS IS A TYPICAL BLOCK-BASED CNN PATTERN

CNN building block

CNN Classifier

conv2D (n-filters, 3x3)
batch norm

conv2D (n-filters, 3x3)
batch norm

max pool (2,2)
dropout (0.25)

block
(size n)

block
(size 32)
v feature extraction
block network
(size 64)
\J
flatten
dense (512) classifier
dropout (0.5) network
dense (10)

l

45
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OUTLINE FOR SLIDES

e  Visualization methods
«  Some common CNN structures
* Reduced complexity CNN architectures

*  Outline of Back-propagation for CNNs
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DOGS VS. CATS @&

718 - Ken. 15
Cattledog -1 yr

48
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DOGS VS. CATS @

Dataset available here

https://www.kaggle.com/c/dogs-vs-cats

let’s explore a simple CNN and see if we can get some
insight into what the filters are looking for and how they
respond to a given input image

49
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DOGS-V-CATS: CATS AND DOGS - CNN.IPYNB

Layer (type) Output Shape Param #
Conv2d-1 [-1, 32, 150, 150] 896
Conv2d-2 [-1, 64, 150, 150] 18,496

MaxPool2d-3 [-1, 64, 75, 75] 0

Conv2d-4 [-1, 128, 75, 75] 73,856
Conv2d-5 [-1, 128, 75, 75] 147,584
MaxPool2d-6 [-1, 128, 37, 37] 0
Conv2d-7 [-1, 256, 37, 37] 295,168
Conv2d-8 [-1,512,37,37] 1,180,160
MaxPool2d-9 [-1,512, 18, 18] 0
Conv2d-10 [-1,512,18,18] 2,359,808
Conv2d-11 [-1,512,18,18] 2,359,808

MaxPool2d-12 [-1,512, 8, 8] 0

Dropout2d-13 [-1,32768] 0
Linear-14 [-1,512] 16,777,728
Linear-15 [-1, 1] 513

Total params: 23,214,017
Trainable params: 23,214,017

Non-trainable params: 0

50
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DOGS-V-CATS: VISUALIZING CNN FEATURE MAPS

train samples

ol
o __ e S input image

1st conv2D

conv2d

0 500 1000 1500 2000

2nd conv2D

conv2d_1

0 200 400 600 800 1000
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DOGS-V-CATS: VISUALIZING CNN FEATURE MAPS

3rd conv2D

conv2d_2

100
150
200

0

0 200 400 600 800 1000

52
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DOGS-V-CATS: VISUALIZING CNN FEATURE MAPS

4th conv2D

conv2d_3

r Sy

100

120

140

0 100 200 300 400 500

53
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DOGS-V-CATS: MAX FILTER RESPONSE

train an input image so that it maximizes
the output energy in a particular filter

Cats and Dogs - viz.ipynb

20 20

100 100 100

120 120 120

140 140 140

s 100 125 75 100 125

75 100 125

channel 16 channel 71 channel 121

[(?, 150, 150, 3)]

conv2d_input: InputLayer

[(?, 150, 150, 3)]

(7,148,148, 32)

output: (7,74,74,32)

input: | (2,72,72,64)

output: | (2,36, 36,64)

input: | (2,34,34,128)

max_pooling2d_2: Maﬁﬂm’ iﬁ 128)

(2,17,17,128)

(2,15,15,128)

input: | (2,15, 15,128)

max_pooling2d_3: MaxPooling2D

output: (2,7,7,128)

(2,7,7,128)

(2,6272)

(7,6272)

(7,6272)

(2,6272)

(2,512)

(2,512)

&0

54
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CNN VISUALIZATION: GRAD-CAM
Gradient Weighted Class Activation Mapping

Boxer: 0.4 Cat: 0.2 Airliner: 0.9999 Boxer: 1.1e-20
(a) Original image (b) Adversarial image (C) Grad-CAM “Dog”

Tiger Cat: 6.5e-17 Airliner: 0.9999 Space shuttle: le-5
(d) Grad-cam “car” (€) Grad-CAM “Airliner” (f) Grad-cAM “Space Shuttle”

pyimagesearch tutorial (keras)

demo
https://github.com/kazuto1011/grad-cam-pytorch

Patch
10x10 15x15 25x25 35x35 45x45

size

“boxer"
sensitivity

90x90
e AR 2 YR BE

. 2
mastiff” 5 § 9
sensitivity 5 ‘. v . X‘
“tiger f. } ‘. " ’q i
Cat“ X 4 . < ?
sensitivity TN »"* & e 4

see where a layer is “looking” for a given class

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-based localization." 55

Proceedings of the IEEE international conference on computer vision. 2017.
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OUTLINE FOR SLIDES

Some common CNN structures

Reduced complexity CNN architectures

Outline of Back-propagation for CNNs
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CNNS: USE WHEN FEATURE INFORMATION IS LOCALIZED

ImageNet Large Scale Visual Recognition Challenge results

In the competition’s first year
I— teams had varying success.
Every team got at least 25%
wrong.

In 2012, the team to first use
deep learning was the only
50 team to get their error rate
below 25%.

The following year
nearly every team got
25% or fewer wrong.

¢]
o]
In 2017, 29 of 38
teams got less than
5% wrong.
o
o]

o
b o

2012: AlexNet

2014: VGG

2015: Inception (aka GooglLeNet)

2015 ResNet

The leap that transformed Al research—
and possibly the world 58
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RECEPTIVE FIELD AS WE GO DEEPER

deeper in the network, each pixel in
the feature map can “see” more of
the input image

XN\

;:\

reason why height and width of the
feature map can be reduced as we
go deeper

N\

1
1

~

NN N NN

N\

Lin, Haoning, Zhenwei Shi, and Zhengxia Zou. "Maritime semantic labeling of optical remote sensing images with multi-
scale fully convolutional network.” Remote sensing 9.5 (2017): 480. 59
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RECEPTIVE FIELD AS WE GO DEEPER

simple script to find input pixels that can affect output pixels for a
specific CNN architecture (pytorch-receptive-field)

receptive_field_dict = receptive_field(model, (3, 256, 256))

class Net(nn.Module): receptive_field_for_unit(receptive_field_dict, '2’, (2,2))

def __init__(self):
super(Net, self).__init__()
self.conv = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)

self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

def forward(self, x):

y = self.conv(x)
Layer (type) mapsize start  jump receptive_field

y = self.bn(y)

y = self.relu(y) 0 [256, 256] 0.5 1.0 1.0

y = self.maxpool(y) 1 [128, 128] 0.5 2.0 7.0
2 [128, 128] 0.5 2.0 7.0

returny 3 [128,128] 05 2.0 7.0
4 [64, 64] 0.5 4.0 11.0

Receptive field size for layer 2, unit_position (1, 1), is
[(0, 6.0), (0, 6.0)]

Lin, Haoning, Zhenwei Shi, and Zhengxia Zou. "Maritime semantic labeling of optical remote sensing images with multi-
scale fully convolutional network.” Remote sensing 9.5 (2017): 480.
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RECEPTIVE FIELD AS WE GO DEEPER

simple script to find input pixels that can affect output pixels for a
specific CNN architecture

inverse image

A

receptive field

this could also be computed by hand
by book-keeping the inverse image of
each conv2D and pool layer
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There are pretrained ImageNet models in PyTorch
(“model-z00”)
import torchvision.models as models Model Size Top-1 Accuracy Top-5 Accuracy Parameters Depth
resnetl8 = models.resnetl8(pretrained=True) Xception 88 MB 0.790 0.945 22,910,480 126
alexnet = models.alexnet (pretrained=True) VGG16 528 MB 0.713 0.901 138,357,544 23
sgueezenset = models.sgueezenstl B(pretrained=True) VGG19 549 MB 0.713 0.900 143,667,240 26
szl = rrreleoninls TmEamLtaisI oy ResNet50 98 MB 0.749 0.921 25,636,712 -
densenet = models.densenetl6l (pretrained=True) ResNet101 171 MB 0.764 0.928 44,707,176 _
inception = models.incep‘tion_{vB{pre‘ufrained:TIue} ResNet152 232 MB 0.766 0.931 60,419,944 B
googlenet = models.googlenet(pretrained=True)
shufflenset = models.shufflenet_v2_x1_0(pretrained=True) ResNet50V2 98 MB 0.760 0.930 25’613'800 -
mobilenet = models.mobilenet_v2{pretrained=True) ResNet101V2 171 MB 0.772 0.938 44,675,560 -
resnext50_32x4d = models.resnext50_32x4d(pretrained=True) ResNet152Vv2 232 MB 0.780 0.942 60,380,648 -
wide_resnet5@_2 = models.wide_resnet50_2(pretrained=True) |ncepﬁonv3 92 MB 0.779 0.937 23,851,784 159
LEE0EE S pilzlsoiimerEl L CEEOEInEIsIE InceptionResNetV2 215 MB 0.803 0.953 55,873,736 572
MobileNet 16 MB 0.704 0.895 4,253,864 88
MobileNetV2 14 MB 0.713 0901 3,538,984 88
DenseNet121 33MB 0.750 0.923 8,062,504 121
DenseNet169 57 MB 0.762 0.932 14,307,880 169
DenseNet201 80 MB 0.773 0.936 20,242,984 201
NASNetMobile 23 MB 0.744 0.919 5,326,716 o
NASNetLarge 343 MB 0.825 0.960 88,949,818 -
The top-1 and top-5 accuracy refers to the model's performance on the ImageNet validation
dataset.
https://pytorch.org/docs/stable/torchvision/models.html 62
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COMMON CNN ARCHITECTURE PATTERNS - VGG16
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Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale

image recognition.” arXiv preprint arXiv:1409.1556 (2014).
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COMMON CNN ARCHITECTURE PATTERNS — RESNET(S)

residual connections:

aid in gradient flow
(reduce vanishing
gradient)

weight layer
F(x) L relu

weight layer

X

identity

allow learning of

Figure 2. Residual learning: a building block. alternative™ networks

— e.g., can learn to bypass
the two “weight layers” in
this figure

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). 64
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COMMON CNN ARCHITECTURE PATTERNS — RESNET(S)

0007 24

ResNet34

[ 000T %) ] [ 0007 2 [ 960 2 ]
£ £ A
|ood Sae |ood Sae 9601 2}
A A
zrs ‘Mo gxg | [ 715 nuooexe
A A
s ‘Auoo exe | [ z1s'auoo exe
A
z1s ‘nuodexe | | z1s‘nuod exe
A A
z1s ‘uodexe | | z1s‘Auod exe
........... £
S| usuoexe | | 1S ‘auo exe
A A A
e ¥ uswoexe | | @/ 'e1s ‘Auod exg 2/ ‘|ood
......... A A
95z ‘nuod exg | | 9sz ‘auoo exe
4 A
95z ‘Muod exe | | 9sz ‘auoo exe
A
95z ‘nuoaexe | | 95z ‘Auoo exe
A A
95z ‘nuoa exe | | 95z ‘Auoo exe
A
95z ‘Muod exg | | 9sz ‘auoo exe
A A
95z ‘Muod exg | | 95z ‘auoo exe
A
957 ‘Muol gxg | | 95z ‘Auooexe
A A
957 ‘nuo gxg | | 95z ‘Auooexe | zrsauooexg |
A A
gsz ‘Auoexg | | 95z ‘nuoogxe | zrs‘huoexe |
A A A
g5z ‘nuodexe | [ osz'nuooexe [ Tsmuoee |
e 7y 7y
o [ eszimuooexe | | 95z ‘auo exe [ zistuooexe |
A ) £ 3
..... _ 7/ ‘95 ‘AU0D EXE _ _ 2/ ‘95¢ ‘Au0d EXE z/ 'lood
el yY
871 ‘MU0 Exg | | 8z ‘oo gxg
A A
8z1 ‘Ao exg | | 8z ‘Auod exe
A
[Tezmrumexe | | 8er ‘Auod exe
A A
| serauooexe | | 81 ‘auod exe |  ersuoexe |
A A
EACE | 821 ‘Auod gxe | zis'nuooexe |
4 A A
871 ‘Muod exe | | sz ‘auoo exe | zis‘auooexe |
.- 4 4
| ger'auooexe | | et ‘Auooexe | ersumexe |
A A A r'y
S | #sarauorexe | | z/'sz1 'nuooexe Z/'|ood
......... A
9 ‘AUDD £XE _ _ 9 ‘AU £XE
A A
$9 ‘AUDD £XE _ _ 9 ‘AUOD EXE
A
9 ‘AUDD EXE _ _ 9 ‘AUOD EXE _ 957 ‘AUOD EXE _
A A A
9 AUDD EXE _ _ 9 ‘AUOD EXE _ 957 ‘AUOD EXE _
A A
9 AUDD EXE _ _ 9 ‘AUDD EXE _ 967 ‘AUQD EXE _
A A A
_ 9 ‘AUDD EXE _ _ 9 ‘AUDD EXE _ 957 ‘AUCD EXE _
A A
z/ jood z/ ‘lood z/ ‘Jood
A A A

_ 7/ %9 ‘AU0d /x/

7/ 79 ‘AUOD /X[

[ szravorexe |

afew

|enpisal Jahe|-€

afewn

uie|d JaAe|-y€

8ZT ‘AUOD EXE

z/ ‘lood

#9 ‘AUOD EXE

adew

6T-D9OA

13218
ndino

£ 225
ndino

1 19218
ndino

87 19215
indino

gg :azIs
indino

TIT @2s
ndino

ez eus
indino

65

., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
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COMMON CNN ARCHITECTURE PATTERNS — RESNET(S)

method top-1 err. top-35 err.
VGG [41] (ILSVRC’14) - 8.43"
GoogLeNet [44] (ILSVRC’ 14) - 7.89
VGG [41] (v5) 24.4 7.1 Note:
PReL.U-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81 there are v2
ResNet-34 B 21.84 5.71 versions of
ResNet-34 C 21.53 5.60 these
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet

validation set (except f reported on the test set).

Proceccings of the IEEE conference on computer vision and patters recogniiion (op. 770.778) 66
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COMMON CNN ARCHITECTURE PATTERNS - INCEPTION

aka GoogleNet

g«wwu':‘li 1060

DEEPER  _

1e1+1(5)

v
1x1+1(5)

—

 softmaxi

= &
= - N
25 / B H
E 34 3
= = A z G - -
H B \ o5 2 g
23 = T el )
EE BE m m BT B E g
UE L ,9- > 8 g o ~ £ . - 2
/ e ET 2 [ 8%
/ BRY B £ = = £ # ]
= = Ei £l 4 @ a ¥
@ 7 & 2 ] 8
=i . -
EE EE & o BE]
oy B z A 5 -
H E &

Conv
1x1+1(5)

S

(Ceotmaz ]
o
4
[y—
5
p
1x1+1(5) 1
Depthcon
Con
1+1(5)
Depthc

\
Conv
x1+1(5 X1+
\h

AN

1x1 convolutions

Qtions

/’:—V/———'

Filter
concatenation

_—7

3x3 convolutions

5x5 convolutions

1x1 convolutions

[)

)

1x1 convolutions

Previous layer

]

3x3 max pooling

(b) Inception module with dimensionality reduction

MaxPool

3x3+145)

Canv
161+ 1(5})
/

Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference

on computer vision and pattern recognition. 2015.
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USING FIXED CNN LAYERS FOR A DIFFERENT CV TASK
T T !

(donss,rained — .. cassifer notwork e
on imagnet) dataset)

! ! !

retrain
prep for classier
retrain

; layers
feature extraction feature extraction feature extraction
(CNN layers trained —

e.g., on imagenet) trained and frozen trained and frozen

| | |

features needed for many CV tasks are similar to Imagenet classification features

you can reuse all or part of the feature extraction network

import torchvision.models as models

model = models.resnet50 (pretrained=True)
68
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ONE LAST LAYER TYPE: GLOBAL POOLING

torch.nn.MaxPool2d (kernel_ size=image_ size)

torch.nn.AvgPool2d (kernel size=image size)

follow with: x.squeeze ()

Input: 4D tensor with shape (batch_size, rows, cols, channels)

Output: 2D tensor with shape (batch_size, channels)

this is used after the last conv2D/pool layer before the
“flatten” in many recent models

reduces the complexity of the dense classification network
without sacrificing performance ‘o
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OUTLINE FOR SLIDES

* Reduced complexity CNN architectures

*  Outline of Back-propagation for CNNs

70
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REDUCED PARAMETER/COMPUTATION APPROACHES

For larger CNNs, the number of parameters is so large, that
storage complexity becomes a significant issue

this is an issue for running these models in inference mode on mobile devices

computational complexity (during inference and training)
is also an issue
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REDUCED PARAMETER/COMPUTATION APPROACHES

Two primary methods:

constrained filter structures: alter the standard conv2D
operations to lower the computational/storage complexity

post-training processing to reduce complexity
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CONSTRAINED FILTERING: DEPTH-WISE CONVOLUTION

only do convolution separately for channels
— i.e., no information is mixed across channels
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CONSTRAINED FILTERING: GROUPWISE CONVOLUTION

trade-off between standard conv2D filtering and
depth-wise filtering

use more of these grouped-filters to get more
output channels

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural
networks.” Advances in neural information processing systems. 2012. 75
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CONSTRAINED FILTERING: POINTWISE CONVOLUTION

lxGCm

standard Conv2D with filter size 1x1

a.k.a., 1x1 convolution
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EXAMPLE: MOBILENET

&MY -

Nﬁlters = COUT.

combine depth-wise convolution with many 1x1 convolutions

compare with standard Conv2D:

C‘out = 32
Ci = 16 16, 3x3 depth-wise kernels: 144
Hi, = 64 32, 1x1 point-wise filters: 512
Win = 64 32, biases: 32
h=w=3

Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications.” arXiv preprint arXiv:1704.04861 (2017).

Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks."” Proceedings of the IEEE conference on 77
computer vision and pattern recognition. 2018.
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EXAMPLE: SHUFFLENET

wo- O

multiple grouped convolutions shuffle across channels

group-wise convolutions with shuffling

Zhang, Xiangyu, et al. "Shufflenet: An extremely efficient convolutional neural network for mobile devices."” Proceedings
of the IEEE conference on computer vision and pattern recognition. 2018. APA 78
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EXAMPLE: PRE-DEFINED SPARSITY

M pSConv
_— kernels OFM
S~ (iE e
: | ﬂ IHO
~N ¢ P
\ R

[ and WMare non-zero weight locations of 3D

filters K;, K; and Kc,, respectively

pre-define some of the filter coefficients to be zero and

hold fixed through training and inference

targets specialized hardware acceleration — project concept is to map this to GPU

Kundu, Souvik, et al. "Pre-defined Sparsity for Low-Complexity Convolutional Neural Networks." IEEE Transactions on Computers (2020).
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EXAMPLE: PRE-DEFINED SPARSITY
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Fig. 11: Performance comparison of our proposed architectures that have similar or fewer FLOPs than ShuffleNet and
MobileNetV2 with comparable or better classification accuracy on (a) CIFAR-10 and (b) Tiny ImageNet.
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Fig. 12: Comparison of the number of model parameters of the
network models described in Fig 11 for (a) CIFAR-10 and (b)
Tiny ImageNet datasets.

Kundu, Souvik, et al. "Pre-defined Sparsity for Low-Complexity Convolutional Neural Networks." IEEE Transactions on Computers (2020). 80
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POST-TRAINING APPROACHES

post-training processing to minimize complexity

Pruning: set near-zero weights to zero, fix these and do some retraining

Quantization: map similar valued weights to the same value to save storage

Binaryization: find a set of binary weights that best approximate
the trained network behavior

81




USCViterbi

School of Engineering

OUTLINE FOR SLIDES

Back-propagation for CNNs
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BACK-PROPAGATION IN CNNS

recall the definition of a standard Conv2D operation:

yli,j, k] = Z Z helm,nlx[i + m,j +n,c]

c (mn)

h¢ x[m,n] = 2D kernel for input channel ¢, output channel k

chain rule:
ac B z ayli',j' k'] aCc
ox[i,j, k]~ Za  ox[i,j k] oyli',j' k']
G’y k"

which values of h are involved here?

shorthand: /

o aC . oyli",j" KT ., ., .,
av[l,],k] é m ax[l:]: k] é Z [ax[l] k] _’y[l ;] ,k]

@'k
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BACK-PROPAGATION IN CNNS

Let’s start with the 2D convolution only...

yli',j'l = z him,n]x[i" + m,j" + n]

(m,n)

- z h[s —i',t — j']x[s, t]

(s,t)
ay[i',j']
o.li,7] = S.Ti' i’
i ] L 0x[i, ] T
@.j"
chain-rule term:
oyl 6clijl= ) hli=i'j—j'1xl",)']
= hli— i = /] ayD

0x[i,j]

(m,n) 85
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BACK-PROPAGATION IN CNNS

yli,jl = z him,n]x[i + m,j + n] forward: convolve with h[i, ]
(m,n)
O, li, j] = z h[-m,—n]6y[i + m,j +n] back-prop: convolve with h[—i, —J]
(m,n)
.o 1 .
x(i, j] yli, j]
— 4 |5| 6 /™
9 forward: convolve with h[i, j]
recall: W-transpose in MLP-BP
80 = 3@ [(W(l+1))T8(l+1)]
07, j] S dylt, 7]
< 4 |«
3 2 1 back-prop: convolve with h[—i, —j]
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BACK-PROPAGATION IN CNNS

standard 2DConv with
reflected 2D kernels

this extends to the standard Conv2D convolution

yli',j', k'] zzhkkmn] [i" +m,j" +n, k]

k (mn)
. ayli",j k'l . ., ., .,
8.0, 7, k] = Z ox[L, ], K] &, li',j' k']
G/ k") e
ayli',j', k']

ax[l,],k] = hk,k’[l_l ’] _]]

5.1, k] = Z he i —i'j — 18, [, ", k']
@

— z hy ' [=m, —n]é,[i + m,j + n, k]
(mmnk'")
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BACK-PROPAGATION IN CNNS: POOLING

average pooling:

results from standard
differentiation

forward: Q “pixels” averaged

back-prop: 1/Q times the gradient flows back through theses Q “pixels”

non-differentiable....
just a convention that
works!

max pooling:

forward: max over Q “pixels” (i*,j*) ~ argmax

back-prop: gradient flows directly through (i*,j*) only
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CNN/CV RELATED TOPICS

Image segmentation (e.g., U-Net)

Object Detection (e.g., YOLO)

GANs (e.g., “deep fakes”)

89
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