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CONVNETS
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(TYPES OF NEURAL NETWORKS)
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Convolutional NNets

Can view convolutions as feature extractors for MLP classifier

(this feature extraction is learned)



CNNS ARE WIDELY USED, ESPECIALLY IN VISION TASKS
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CNNS ARE WIDELY USED, ESPECIALLY IN VISION TASKS
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CNNS ARE WIDELY USED, ESPECIALLY IN VISION TASKS

7https://thispersondoesnotexist.com https://thisxdoesnotexist.com/

https://thispersondoesnotexist.com/
https://thisxdoesnotexist.com/


CNNS: USE WHEN FEATURE INFORMATION IS LOCALIZED
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CNNS: USE WHEN FEATURE INFORMATION IS LOCALIZED
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does not need to be a “natural” image — 

e.g., signal classification from spectrograms
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CNNS: CHANGING WHAT IS POSSIBLE WITH CV
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CNNs changed the game for 

many computer vision tasks

The leap that transformed AI research—

and possibly the world



CNNS: 1D, 2D, 3D
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there are 1D and 3D convolutional layers, but conv2D is most widely used

1D Conv layers

Oord, Aaron van den, et al. "Wavenet: A generative model for raw audio." arXiv preprint arXiv:1609.03499 (2016).

1D CNN ~ time series data 

3D CNN ~ video data 

(recurrent networks are options too 

and can be combined with conv)
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2D 

CONVOLUTION
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2D CONVOLUTION OPERATIONS

14

2D convolution:

and 2D correlation:

𝑦 𝑖, 𝑗 = 𝑥 𝑖, 𝑗 ∗ ℎ 𝑖, 𝑗 = ෍

𝑚=−∞

∞

෍

𝑛=−∞

∞

𝑥 𝑚, 𝑛 ℎ 𝑖 − 𝑚, 𝑗 − 𝑛

= ෍

𝑚=−𝐿

𝐿

෍

𝑛=−𝐿

𝐿

𝑥 𝑚, 𝑛 ℎ 𝑖 − 𝑚, 𝑗 − 𝑛

𝑦 𝑖, 𝑗 = 𝑥 𝑖, 𝑗 ⋆ ℎ 𝑖, 𝑗 = ෍

𝑚=−∞

∞

෍

𝑛=−∞

∞

𝑥 𝑚, 𝑛 ℎ 𝑖 + 𝑚, 𝑗 + 𝑛

= ෍

𝑚=−𝐿

𝐿

෍

𝑛=−𝐿

𝐿

𝑥 𝑚, 𝑛 ℎ 𝑖 + 𝑚, 𝑗 + 𝑛

Note: last expressions assume that ℎ 𝑖, 𝑗  is zero for 𝑖 > 𝐿, and |𝑗| > 𝐿



2D CONVOLUTION OPERATIONS

15

Since we will be learning the 2D filter ℎ 𝑖, 𝑗 we can adapt a 

correlation convention as “convolution”

typical notation and terminology in the deep learning literature

typically, the support region of the kernel is small — 

e.g., 3x3 kernels are very common

𝑦 𝑖, 𝑗 = 𝑥 𝑖, 𝑗 ⋆ 𝐾 𝑖, 𝑗 = ෍

𝑚=−∞

∞

෍

𝑛=−∞

∞

𝐾 𝑚, 𝑛 𝑥 𝑖 + 𝑚, 𝑗 + 𝑛

𝐾[𝑖, 𝑗] ~ (2D) Filter kernel

“𝑦 is 𝑥 convolved with 𝐾"

𝑦 𝑖, 𝑗 = 𝑥 𝑖, 𝑗 ⋆ 𝐾 𝑖, 𝑗 = ෍

𝑚,𝑛 ∈supp(𝐾)

𝐾 𝑚, 𝑛 𝑥 𝑖 + 𝑚, 𝑗 + 𝑛



2D CONVOLUTION OPERATIONS
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TRADITIONAL 2D IMAGE FILTERS

17

2D filters are widely used in the field of image processing

example: edge detection filter

many computer vision tasks require many types filters to produce features

CNNs learn these filters from the dataset — 

learn good feature extraction



2D CONVOLUTION OPERATIONS — PADDING

18

no padding

empty padding in PyTorch

output will be 

smaller than input

here, 4x4 → 2x2

symmetric padding

padding:[1 | [1,1]] in PyTorch

output will be

same size as input

here, 5x5 →  5x5

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).



2D CONVOLUTION OPERATIONS — PADDING
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other padding conventions exist — 

e.g., “full padding”

output will be larger than input

here, 5x5 → 7x7

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).



CONVOLUTION OPERATIONS — PADDING WITH LAYERS

20

• replication

• reflection

• zero

• constant

PyTorch padding

layers provide 

greater control



2D CONVOLUTION OPERATIONS

21

detailed example for 

3x3 kernel with no 

padding and 5x5 input

kernel

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).



3D CONVOLUTION

22

“slide” ℎ over and compute 3D dot 

product for each output voxel

𝑦 𝑖, 𝑗, 𝑘 = 𝑥 𝑖, 𝑗, 𝑘 ⋆ ℎ 𝑖, 𝑗, 𝑘 = ෍

𝑚,𝑛,𝑜 ∈supp(𝐾)

ℎ 𝑚, 𝑛, 𝑜 𝑥 𝑖 + 𝑚, 𝑗 + 𝑛, 𝑘 + 𝑜



CONV2D FILTERING IN DEEP LEARNING

23

height 

x 

width 

x 

channels

convolution is done with no padding in the depth dimension, 

so at each “shift” a single output pixel is generated

typically, 𝒉 = 𝒘~𝟑



CONV2D FILTERING IN DEEP LEARNING
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sum

across 

channels

(k)

functionally equivalent to previous slide

typically, 𝒉 = 𝒘~𝟑



CONV2D FILTERING IN DEEP LEARNING

25

height 

x 

width 

x 

channels
input feature map output feature map



CONV2D LAYER
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this replaces:

𝒚 = 𝑊𝑥 + 𝒃

in MLPs — i.e., produces linear 
activations

biases 
(each 1x1)

filters

+ …

input feature map output feature map



CONV2D LAYER IN PYTORCH
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nn.Conv2d(3, 32, 3, padding: [1])

32 filters, each 𝑯, 𝑾, 𝑪 = 𝑯, 𝑾, 𝑫 = 𝟑, 𝟑, 𝑪𝒊𝒏

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d



CONV2D LAYER IN PYTORCH
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nn.Conv2d(16, 32, 3, padding:[1])

assume padding=“same” and:
input activations (IFM size): 

output activations (OFM size): 

16*64*64 = 65,536

32*64*64 = 131,072

filter weights/coefficients: 32*(3*3*16) = 4,608

biases: 32

Total trainable parameters in this Conv2D: 4,640

biases 
(each 1x1)

filters

+ …

32 filters 32 biases

32 output

channels



CONV2D LAYER IN PYTORCH

29

input activations (IFM size): 

output activations (OFM size): 

16*64*64 = 65,536

32*64*64 = 131,072

Total trainable parameters in this Conv2D: 4,640

how does this compare to a dense layer with 

same number of input/output activations?

65,536 * 131,072 + 131,072 = 8,590,065,664

why does the Conv2D layer have some many 

fewer trainable parameters?

nn.Conv2d(16, 32, 3, padding:[1])



PARAMETER REUSE IN CNNS

30

Total trainable parameters in this Conv2D: 4,640

8,590,065,664Total trainable parameters for comparable dense layer:

why does the Conv2D layer have some many fewer trainable parameters?

parameters are reused!!

each filter is used many times over the input feature map

sparse connectivity

output 𝑖, 𝑗 depend only on inputs in neighborhood of 𝑖, 𝑗

nn.Conv2d(16, 32, 3, padding:[1])

“Positive” View: CNNs have fewer parameters than MLPs with same number of activations

“Negative” View: CNNs do more computations per trainable parameter



TWO KEY CNN CONCEPTS

31

Localized features in the inputs

(e.g., natural images)

Parameter Reuse

(e.g., filter is used many times over input feature map)
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POOLING AND 

STRIDE

33



TYPICAL CNN STRUCTURES/PATTERNS

34

more channels as you go deeper

need to manage this —

i.e., reduce height and width

need some kind of “down-sampling” 

doubling 

number of 

channels is 

common



DOWN-SAMPLING: STRIDE > 1

35

convolution, but the stride is >1

reduces 𝐻, 𝑊

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).



DOWN-SAMPLING: AVERAGE POOLING

36

average pooling 

layer

like convolution

w/o padding and

1/9 for all 3x3 

fixed kernel 

coefficients

& stride = pool_size

reduces 𝐻, 𝑊

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).



DOWN-SAMPLING: MAX POOLING

37Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

max pooling layer

like convolution, 

but take max 

element in 

kernel support

&stride = pool_size

reduces 𝐻, 𝑊



MAX POOLING EXAMPLE — KERNEL SIZE = (2,2)
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DOWN-SAMPLING IN PYTORCH

39

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

nn.Conv2d(

 in_channels: int, out_channels: int, 

 kernel_size: Union[T, Tuple[T, T]], 

 stride: Union[T, Tuple[T, T]] = 1, 

 padding: Union[T, Tuple[T, T]] = 0, 

 dilation: Union[T, Tuple[T, T]] = 1,

    padding_mode: str = 'zeros’,

 groups: int = 1, bias: bool = True

)

https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html

nn.AvgPool2d(

  kernel_size = (2,2),

  padding = (1,1)

)

dilation is 

“spreading” the 

2D kernel values 

over larger filed 

of view

default strides

for max/avg pooling 

is kernel_size



DILATION IN CONV2D

40

not as common

nn.Conv2d(dilation: n)

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).
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EXAMPLE

42



LET’S JUMP IN… PYTORCH

43

fmnist_cnn.py

This achieves ~ 93.5% accuracy 

on Fashion MNSIT

(compare to ~88% with MLP)

_________________________________________________________________

Layer (type)                 Output Shape              Param #

=================================================================

conv2d (Conv2D)              (None, 28, 28, 32)        320

_________________________________________________________________

activation (Activation)      (None, 28, 28, 32)        0

_________________________________________________________________

batch_normalization (BatchNo (None, 28, 28, 32)        128

_________________________________________________________________

conv2d_1 (Conv2D)            (None, 28, 28, 32)        9248

_________________________________________________________________

activation_1 (Activation)    (None, 28, 28, 32)        0

_________________________________________________________________

batch_normalization_1 (Batch (None, 28, 28, 32)        128

_________________________________________________________________

max_pooling2d (MaxPooling2D) (None, 14, 14, 32)        0

_________________________________________________________________

dropout (Dropout)            (None, 14, 14, 32)        0

_________________________________________________________________

conv2d_2 (Conv2D)            (None, 14, 14, 64)        18496

_________________________________________________________________

activation_2 (Activation)    (None, 14, 14, 64)        0

_________________________________________________________________

batch_normalization_2 (Batch (None, 14, 14, 64)        256

_________________________________________________________________

conv2d_3 (Conv2D)            (None, 14, 14, 64)        36928

_________________________________________________________________

activation_3 (Activation)    (None, 14, 14, 64)        0

_________________________________________________________________

batch_normalization_3 (Batch (None, 14, 14, 64)        256

_________________________________________________________________

max_pooling2d_1 (MaxPooling2 (None, 7, 7, 64)          0

_________________________________________________________________

dropout_1 (Dropout)          (None, 7, 7, 64)          0

_________________________________________________________________

flatten (Flatten)            (None, 3136)              0

_________________________________________________________________

dense (Dense)                (None, 512)               1606144

_________________________________________________________________

activation_4 (Activation)    (None, 512)               0

_________________________________________________________________

batch_normalization_4 (Batch (None, 512)               2048

_________________________________________________________________

dropout_2 (Dropout)          (None, 512)               0

_________________________________________________________________

dense_1 (Dense)              (None, 10)                5130

_________________________________________________________________

activation_5 (Activation)    (None, 10)                0

=================================================================

Total params: 1,679,082

Trainable params: 1,677,674

Non-trainable params: 1,408



LET’S JUMP IN… PYTORCH

44

CNN MLP



THIS IS A TYPICAL BLOCK-BASED CNN PATTERN

45

CNN building block

CNN Classifier
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VISUALIZATION

47



DOGS VS. CATS 

48



DOGS VS. CATS 

49

Dataset available here

https://www.kaggle.com/c/dogs-vs-cats

let’s explore a simple CNN and see if we can get some 

insight into what the filters are looking for and how they 

respond to a given input image

https://www.kaggle.com/c/dogs-vs-cats


DOGS-V-CATS: CATS AND DOGS – CNN.IPYNB

50

----------------------------------------------------------------

        Layer (type)               Output Shape         Param #

================================================================

            Conv2d-1         [-1, 32, 150, 150]             896

            Conv2d-2         [-1, 64, 150, 150]          18,496

         MaxPool2d-3           [-1, 64, 75, 75]               0

            Conv2d-4          [-1, 128, 75, 75]          73,856

            Conv2d-5          [-1, 128, 75, 75]         147,584

         MaxPool2d-6          [-1, 128, 37, 37]               0

            Conv2d-7          [-1, 256, 37, 37]         295,168

            Conv2d-8          [-1, 512, 37, 37]       1,180,160

         MaxPool2d-9          [-1, 512, 18, 18]               0

           Conv2d-10          [-1, 512, 18, 18]       2,359,808

           Conv2d-11          [-1, 512, 18, 18]       2,359,808

        MaxPool2d-12            [-1, 512, 8, 8]               0

        Dropout2d-13                [-1, 32768]               0

           Linear-14                  [-1, 512]      16,777,728

           Linear-15                    [-1, 1]             513

================================================================

Total params: 23,214,017

Trainable params: 23,214,017

Non-trainable params: 0



DOGS-V-CATS: VISUALIZING CNN FEATURE MAPS
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input image Cats and Dogs – viz.ipynb

1st conv2D

2nd conv2D



DOGS-V-CATS: VISUALIZING CNN FEATURE MAPS
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Cats and Dogs – viz.ipynb

3rd conv2D



DOGS-V-CATS: VISUALIZING CNN FEATURE MAPS

53

Cats and Dogs – viz.ipynb

4th conv2D



DOGS-V-CATS: MAX FILTER RESPONSE

54

train an input image so that it maximizes 

the output energy in a particular filter

channel 16 channel 71 channel 121

Cats and Dogs – viz.ipynb



CNN VISUALIZATION: GRAD-CAM

55

Gradient Weighted Class Activation Mapping

pyimagesearch tutorial (keras)

demo
https://github.com/kazuto1011/grad-cam-pytorch

see where a layer is “looking” for a given class

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-based localization." 

Proceedings of the IEEE international conference on computer vision. 2017.

https://github.com/kazuto1011/grad-cam-pytorch
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BLOCK 

STRUCTURES

57



CNNS: USE WHEN FEATURE INFORMATION IS LOCALIZED

58

2012: AlexNet

• ~60M parameters

• 16.4% top-5 error 

2014: VGG

• ~140M parameters

• 10% top-5 error

2015: Inception (aka GoogLeNet)

• ~4M parameters

• ~7% top-5 error

2015 ResNet

• ~60M parameters

• ~7% top-5 error

The leap that transformed AI research—

and possibly the world



RECEPTIVE FIELD AS WE GO DEEPER

59

deeper in the network, each pixel in 

the feature map can “see” more of 

the input image

reason why height and width of the 

feature map can be reduced as we 

go deeper

Lin, Haoning, Zhenwei Shi, and Zhengxia Zou. "Maritime semantic labeling of optical remote sensing images with multi-

scale fully convolutional network." Remote sensing 9.5 (2017): 480.

deeper into the network



RECEPTIVE FIELD AS WE GO DEEPER

60

simple script to find input pixels that can affect output pixels for a 

specific CNN architecture (pytorch-receptive-field)

class Net(nn.Module):

  def __init__(self):

    super(Net, self).__init__()

    self.conv = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,   bias=False)

    self.bn = nn.BatchNorm2d(64)

    self.relu = nn.ReLU(inplace=True)

    self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

  def forward(self, x):

    y = self.conv(x)

    y = self.bn(y)

    y = self.relu(y)

    y = self.maxpool(y)

    return y

receptive_field_dict = receptive_field(model, (3, 256, 256))

receptive_field_for_unit(receptive_field_dict, ’2’, (2,2))

------------------------------------------------------------------------------
        Layer (type)    map size      start       jump receptive_field
====================================================
        0             [256, 256]        0.5        1.0             1.0
        1             [128, 128]        0.5        2.0             7.0
        2             [128, 128]        0.5        2.0             7.0
        3             [128, 128]        0.5        2.0             7.0
        4               [64, 64]        0.5        4.0            11.0
====================================================
Receptive field size for layer 2, unit_position (1, 1),  is
 [(0, 6.0), (0, 6.0)]

Lin, Haoning, Zhenwei Shi, and Zhengxia Zou. "Maritime semantic labeling of optical remote sensing images with multi-

scale fully convolutional network." Remote sensing 9.5 (2017): 480.



RECEPTIVE FIELD AS WE GO DEEPER
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this could also be computed by hand 

by book-keeping the inverse image of 

each conv2D and pool layer
pytorch-receptive-field

inverse image

receptive field

simple script to find input pixels that can affect output pixels for a 

specific CNN architecture



POPULAR CNN ARCHITECTURES/PATTERNS
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There are pretrained ImageNet models in PyTorch

(“model-zoo”)

https://pytorch.org/docs/stable/torchvision/models.html



COMMON CNN ARCHITECTURE PATTERNS - VGG16

63
Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale 

image recognition." arXiv preprint arXiv:1409.1556 (2014).



COMMON CNN ARCHITECTURE PATTERNS – RESNET(S)

64

residual connections:

aid in gradient flow 

(reduce vanishing 

gradient)

allow learning of 

“alternative” networks

— e.g., can learn to bypass 

the two “weight layers” in 

this figure

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In 

Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).



COMMON CNN ARCHITECTURE PATTERNS – RESNET(S)
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ResNet34

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In 

Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).



COMMON CNN ARCHITECTURE PATTERNS – RESNET(S)
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Note:

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In 

Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

there are v2 

versions of 

these



COMMON CNN ARCHITECTURE PATTERNS - INCEPTION
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aka GoogLeNet

Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference 

on computer vision and pattern recognition. 2015.



USING FIXED CNN LAYERS FOR A DIFFERENT CV TASK

68

features needed for many CV tasks are similar to Imagenet classification features

you can reuse all or part of the feature extraction network

import torchvision.models as models

model = models.resnet50(pretrained=True)



ONE LAST LAYER TYPE: GLOBAL POOLING

pool over the pixels in 

a channel

this is used after the last conv2D/pool layer before the 

“flatten” in many recent models

reduces the complexity of the dense classification network 

without sacrificing performance

torch.nn.MaxPool2d(kernel_size=image_size)

torch.nn.AvgPool2d(kernel_size=image_size)

follow with: x.squeeze()

Input: 4D tensor with shape (batch_size, rows, cols, channels)

Output: 2D tensor with shape (batch_size, channels)

69
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REDUCING 

COMPLEXITY

71



REDUCED PARAMETER/COMPUTATION APPROACHES

72

For larger CNNs, the number of parameters is so large, that 

storage complexity becomes a significant issue

this is an issue for running these models in inference mode on mobile devices

computational complexity (during inference and training)

is also an issue

there has been a lot of work on reducing the storage and computational 

complexity of CNNs — most have focused on inference of trained models



REDUCED PARAMETER/COMPUTATION APPROACHES

73

Two primary methods:

constrained filter structures: alter the standard conv2D 

operations to lower the computational/storage complexity

post-training processing to reduce complexity



CONSTRAINED FILTERING: DEPTH-WISE CONVOLUTION

74

only do convolution separately for channels

— i.e., no information is mixed across channels

=



CONSTRAINED FILTERING: GROUPWISE CONVOLUTION

75

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural 

networks." Advances in neural information processing systems. 2012.

trade-off between standard conv2D filtering and 

depth-wise filtering

use more of these grouped-filters to get more 

output channels



CONSTRAINED FILTERING: POINTWISE CONVOLUTION

76

1 𝑥 1 𝑥 𝐶𝑖𝑛

standard Conv2D with filter size 1x1

a.k.a., 1x1 convolution



EXAMPLE: MOBILENET

77

combine depth-wise convolution with many 1x1 convolutions

compare with standard Conv2D:

4,640 parameters 

with standard 

approach

16, 3x3 depth-wise kernels: 

32, 1x1 point-wise filters: 

32, biases: 

144

512

32

688 parameters 

for same output 

feature map size

Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." arXiv preprint arXiv:1704.04861 (2017).

Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks." Proceedings of the IEEE conference on 

computer vision and pattern recognition. 2018.



EXAMPLE: SHUFFLENET

78

group-wise convolutions with shuffling

Zhang, Xiangyu, et al. "Shufflenet: An extremely efficient convolutional neural network for mobile devices." Proceedings 

of the IEEE conference on computer vision and pattern recognition. 2018. APA  

shuffle across channelsmultiple grouped convolutions



EXAMPLE: PRE-DEFINED SPARSITY
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pre-define some of the filter coefficients to be zero and 

hold fixed through training and inference

targets specialized hardware acceleration — project concept is to map this to GPU

Kundu, Souvik, et al. "Pre-defined Sparsity for Low-Complexity Convolutional Neural Networks." IEEE Transactions on Computers (2020).
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POST-TRAINING APPROACHES

81

post-training processing to minimize complexity

Pruning: set near-zero weights to zero, fix these and do some retraining

Quantization: map similar valued weights to the same value to save storage

Binaryization: find a set of binary weights that best approximate 

the trained network behavior

Yang, Tien-Ju, Yu-Hsin Chen, and Vivienne Sze. "Designing energy-efficient convolutional neural networks using 

energy-aware pruning." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.

Zhou, Aojun, et al. "Incremental network quantization: Towards lossless CNNs with low-precision weights." 

arXiv preprint arXiv:1702.03044 (2017).

Rastegari, Mohammad, et al. "Xnor-net: Imagenet classification using binary convolutional neural networks." 

European conference on computer vision. Springer, Cham, 2016.



OUTLINE FOR SLIDES

• Motivation, applications

• Basic 2D convolution operations

◦ PyTorch 2Dconv layer

• Pooling and stride

• Fashion MNIST example

• Visualization methods

• Some common CNN structures

• Reduced complexity CNN architectures

• Back-propagation for CNNs
82



CNN BACK 
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BACK-PROPAGATION IN CNNS

84

recall the definition of a standard Conv2D operation:

chain rule:

shorthand:

𝑦 𝑖, 𝑗, 𝑘 = ෍

𝑐

෍

(𝑚,𝑛)

ℎ𝑐,𝑘 𝑚, 𝑛 𝑥 𝑖 + 𝑚, 𝑗 + 𝑛, 𝑐

ℎ𝑐,𝑘 𝑚, 𝑛 = 2D kernel for input channel 𝑐, output channel 𝑘

𝜕𝐶

𝜕𝑥 𝑖, 𝑗, 𝑘
= ෍

𝑖′,𝑗′,𝑘′

𝜕𝑦 𝑖′, 𝑗′, 𝑘′

𝜕𝑥 𝑖, 𝑗, 𝑘

𝜕𝐶

𝜕𝑦 𝑖′, 𝑗′, 𝑘′

𝜕𝑣 𝑖, 𝑗, 𝑘 ≜
𝜕𝐶

𝜕𝑣 𝑖, 𝑗, 𝑘
𝜕𝑥 𝑖, 𝑗, 𝑘 ≜ ෍

𝑖′,𝑗′,𝑘′

𝜕𝑦 𝑖′, 𝑗′, 𝑘′

𝜕𝑥[𝑖, 𝑗, 𝑘]
𝛿𝑦 𝑖′, 𝑗′, 𝑘′

which values of ℎ are involved here?



BACK-PROPAGATION IN CNNS
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Let’s start with the 2D convolution only…

chain-rule term:

𝑦 𝑖′, 𝑗′ = ෍

𝑚,𝑛

ℎ 𝑚, 𝑛 𝑥 𝑖′ + 𝑚, 𝑗′ + 𝑛

= ෍

𝑠,𝑡

ℎ 𝑠 − 𝑖′, 𝑡 − 𝑗′ 𝑥 𝑠, 𝑡

𝛿𝑥 𝑖, 𝑗 = ෍

𝑖′,𝑗′

𝜕𝑦[𝑖′, 𝑗′]

𝜕𝑥[𝑖, 𝑗]
𝛿𝑦 𝑖′, 𝑗′

𝜕𝑦[𝑖′, 𝑗′]

𝜕𝑥[𝑖, 𝑗]
= ℎ 𝑖 − 𝑖′, 𝑗 − 𝑗′

𝑠 = 𝑖′ + 𝑚

𝑡 = 𝑗′ + 𝑛

𝛿𝑥 𝑖, 𝑗 = ෍

𝑖′,𝑗′

ℎ 𝑖 − 𝑖′, 𝑗 − 𝑗′ 𝑥 𝑖′, 𝑗′

= ෍

𝑚,𝑛

ℎ −𝑚, −𝑛 𝛿𝑦 𝑖 + 𝑚, 𝑗 + 𝑛

𝑚 = 𝑖′ − 𝑖

𝑛 = 𝑗′ − 𝑗



BACK-PROPAGATION IN CNNS
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recall: W-transpose in MLP-BP

forward: convolve with ℎ[𝑖, 𝑗]

back-prop: convolve with ℎ[−𝑖, −𝑗]

forward: convolve with ℎ[𝑖, 𝑗]

back-prop: convolve with ℎ[−𝑖, −𝑗]

𝑦 𝑖, 𝑗 = ෍

𝑚,𝑛

ℎ 𝑚, 𝑛 𝑥 𝑖 + 𝑚, 𝑗 + 𝑛

𝛿𝑥 𝑖, 𝑗 = ෍

𝑚,𝑛

ℎ −𝑚, −𝑛 𝛿𝑦 𝑖 + 𝑚, 𝑗 + 𝑛

𝛅 𝑙 = ሶ𝐚 𝑙 𝐖(𝑙+1) 𝑇
𝛅 𝑙+1



BACK-PROPAGATION IN CNNS
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this extends to the standard Conv2D convolution

standard 2DConv with 

reflected 2D kernels

𝑚 = 𝑖′ − 𝑖
𝑛 = 𝑗′ − 𝑗

𝑦 𝑖′, 𝑗′, 𝑘′ = ෍

𝑘

෍

(𝑚,𝑛)

ℎ𝑘,𝑘′ 𝑚, 𝑛 𝑥 𝑖′ + 𝑚, 𝑗′ + 𝑛, 𝑘

𝛿𝑥 𝑖, 𝑗, 𝑘 = ෍

𝑖′,𝑗′,𝑘′

𝜕𝑦 𝑖′, 𝑗′, 𝑘′

𝜕𝑥 𝑖, 𝑗, 𝑘
𝛿𝑦 𝑖′, 𝑗′, 𝑘′

𝜕𝑦 𝑖′, 𝑗′, 𝑘′

𝜕𝑥 𝑖, 𝑗, 𝑘
= ℎ𝑘,𝑘′ 𝑖 − 𝑖′, 𝑗 − 𝑗′

𝛿𝑥 𝑖, 𝑗, 𝑘 = ෍

𝑖′,𝑗′,𝑘′

ℎ𝑘,𝑘′ 𝑖 − 𝑖′, 𝑗 − 𝑗′ 𝛿𝑦 𝑖′, 𝑗′, 𝑘′

= ෍

𝑚,𝑛,𝑘′

ℎ𝑘,𝑘′ −𝑚, −𝑛 𝛿𝑦 𝑖 + 𝑚, 𝑗 + 𝑛, 𝑘′

𝑖 = 𝑖′ + 𝑚
𝑗 = 𝑗′ + 𝑛



BACK-PROPAGATION IN CNNS: POOLING
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average pooling:

max pooling:

forward: 𝑄 “pixels” averaged 

back-prop: 1/𝑄 times the gradient flows back through theses 𝑄 “pixels”

forward: max over 𝑄 “pixels” 𝑖∗, 𝑗∗ ∼ argmax

back-prop: gradient flows directly through 𝑖∗, 𝑗∗  only

non-differentiable….
just a convention that 
works!

results from standard 

differentiation



CNN/CV RELATED TOPICS

89

Image segmentation (e.g., U-Net)

Object Detection (e.g., YOLO)

GANs (e.g., “deep fakes”)
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