
Spring 2025

CONVOLUTIONAL
NEURAL NETWORKS

DR. BRANDON FRANZKE

EE 541 – UNIT 7

OUTLINE FOR SLIDES

• Motivation, applications

• Basic 2D convolution operations

◦ PyTorch 2Dconv layer

• Pooling and stride

• Fashion MNIST example

• Visualization methods

• Some common CNN structures

• Reduced complexity CNN architectures

• Outline of Back-propagation for CNNs
2

CONVNETS

3

(TYPES OF NEURAL NETWORKS)

4

Convolutional NNets

Can view convolutions as feature extractors for MLP classifier

(this feature extraction is learned)

CNNS ARE WIDELY USED, ESPECIALLY IN VISION TASKS

5

CNNS ARE WIDELY USED, ESPECIALLY IN VISION TASKS

6

CNNS ARE WIDELY USED, ESPECIALLY IN VISION TASKS

7https://thispersondoesnotexist.com https://thisxdoesnotexist.com/

https://thispersondoesnotexist.com/
https://thisxdoesnotexist.com/

CNNS: USE WHEN FEATURE INFORMATION IS LOCALIZED

8

CNNS: USE WHEN FEATURE INFORMATION IS LOCALIZED

9

does not need to be a “natural” image —

e.g., signal classification from spectrograms

fr
e
q
u
e
n
c
y

time

CNNS: CHANGING WHAT IS POSSIBLE WITH CV

10

CNNs changed the game for

many computer vision tasks

The leap that transformed AI research—

and possibly the world

CNNS: 1D, 2D, 3D

11

there are 1D and 3D convolutional layers, but conv2D is most widely used

1D Conv layers

Oord, Aaron van den, et al. "Wavenet: A generative model for raw audio." arXiv preprint arXiv:1609.03499 (2016).

1D CNN ~ time series data

3D CNN ~ video data

(recurrent networks are options too

and can be combined with conv)

OUTLINE FOR SLIDES

• Motivation, applications

• Basic 2D convolution operations

◦ PyTorch 2Dconv layer

• Pooling and stride

• Fashion MNIST example

• Visualization methods

• Some common CNN structures

• Reduced complexity CNN architectures

• Outline of Back-propagation for CNNs
12

2D

CONVOLUTION

13

2D CONVOLUTION OPERATIONS

14

2D convolution:

and 2D correlation:

𝑦 𝑖, 𝑗 = 𝑥 𝑖, 𝑗 ∗ ℎ 𝑖, 𝑗 = ෍

𝑚=−∞

∞

෍

𝑛=−∞

∞

𝑥 𝑚, 𝑛 ℎ 𝑖 − 𝑚, 𝑗 − 𝑛

= ෍

𝑚=−𝐿

𝐿

෍

𝑛=−𝐿

𝐿

𝑥 𝑚, 𝑛 ℎ 𝑖 − 𝑚, 𝑗 − 𝑛

𝑦 𝑖, 𝑗 = 𝑥 𝑖, 𝑗 ⋆ ℎ 𝑖, 𝑗 = ෍

𝑚=−∞

∞

෍

𝑛=−∞

∞

𝑥 𝑚, 𝑛 ℎ 𝑖 + 𝑚, 𝑗 + 𝑛

= ෍

𝑚=−𝐿

𝐿

෍

𝑛=−𝐿

𝐿

𝑥 𝑚, 𝑛 ℎ 𝑖 + 𝑚, 𝑗 + 𝑛

Note: last expressions assume that ℎ 𝑖, 𝑗 is zero for 𝑖 > 𝐿, and |𝑗| > 𝐿

2D CONVOLUTION OPERATIONS

15

Since we will be learning the 2D filter ℎ 𝑖, 𝑗 we can adapt a

correlation convention as “convolution”

typical notation and terminology in the deep learning literature

typically, the support region of the kernel is small —

e.g., 3x3 kernels are very common

𝑦 𝑖, 𝑗 = 𝑥 𝑖, 𝑗 ⋆ 𝐾 𝑖, 𝑗 = ෍

𝑚=−∞

∞

෍

𝑛=−∞

∞

𝐾 𝑚, 𝑛 𝑥 𝑖 + 𝑚, 𝑗 + 𝑛

𝐾[𝑖, 𝑗] ~ (2D) Filter kernel

“𝑦 is 𝑥 convolved with 𝐾"

𝑦 𝑖, 𝑗 = 𝑥 𝑖, 𝑗 ⋆ 𝐾 𝑖, 𝑗 = ෍

𝑚,𝑛 ∈supp(𝐾)

𝐾 𝑚, 𝑛 𝑥 𝑖 + 𝑚, 𝑗 + 𝑛

2D CONVOLUTION OPERATIONS

16

TRADITIONAL 2D IMAGE FILTERS

17

2D filters are widely used in the field of image processing

example: edge detection filter

many computer vision tasks require many types filters to produce features

CNNs learn these filters from the dataset —

learn good feature extraction

2D CONVOLUTION OPERATIONS — PADDING

18

no padding

empty padding in PyTorch

output will be

smaller than input

here, 4x4 → 2x2

symmetric padding

padding:[1 | [1,1]] in PyTorch

output will be

same size as input

here, 5x5 → 5x5

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

2D CONVOLUTION OPERATIONS — PADDING

19

other padding conventions exist —

e.g., “full padding”

output will be larger than input

here, 5x5 → 7x7

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

CONVOLUTION OPERATIONS — PADDING WITH LAYERS

20

• replication

• reflection

• zero

• constant

PyTorch padding

layers provide

greater control

2D CONVOLUTION OPERATIONS

21

detailed example for

3x3 kernel with no

padding and 5x5 input

kernel

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

3D CONVOLUTION

22

“slide” ℎ over and compute 3D dot

product for each output voxel

𝑦 𝑖, 𝑗, 𝑘 = 𝑥 𝑖, 𝑗, 𝑘 ⋆ ℎ 𝑖, 𝑗, 𝑘 = ෍

𝑚,𝑛,𝑜 ∈supp(𝐾)

ℎ 𝑚, 𝑛, 𝑜 𝑥 𝑖 + 𝑚, 𝑗 + 𝑛, 𝑘 + 𝑜

CONV2D FILTERING IN DEEP LEARNING

23

height

x

width

x

channels

convolution is done with no padding in the depth dimension,

so at each “shift” a single output pixel is generated

typically, 𝒉 = 𝒘~𝟑

CONV2D FILTERING IN DEEP LEARNING

24

sum

across

channels

(k)

functionally equivalent to previous slide

typically, 𝒉 = 𝒘~𝟑

CONV2D FILTERING IN DEEP LEARNING

25

height

x

width

x

channels
input feature map output feature map

CONV2D LAYER

26

this replaces:

𝒚 = 𝑊𝑥 + 𝒃

in MLPs — i.e., produces linear
activations

biases
(each 1x1)

filters

+ …

input feature map output feature map

CONV2D LAYER IN PYTORCH

27

nn.Conv2d(3, 32, 3, padding: [1])

32 filters, each 𝑯, 𝑾, 𝑪 = 𝑯, 𝑾, 𝑫 = 𝟑, 𝟑, 𝑪𝒊𝒏

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d

CONV2D LAYER IN PYTORCH

28

nn.Conv2d(16, 32, 3, padding:[1])

assume padding=“same” and:
input activations (IFM size):

output activations (OFM size):

16*64*64 = 65,536

32*64*64 = 131,072

filter weights/coefficients: 32*(3*3*16) = 4,608

biases: 32

Total trainable parameters in this Conv2D: 4,640

biases
(each 1x1)

filters

+ …

32 filters 32 biases

32 output

channels

CONV2D LAYER IN PYTORCH

29

input activations (IFM size):

output activations (OFM size):

16*64*64 = 65,536

32*64*64 = 131,072

Total trainable parameters in this Conv2D: 4,640

how does this compare to a dense layer with

same number of input/output activations?

65,536 * 131,072 + 131,072 = 8,590,065,664

why does the Conv2D layer have some many

fewer trainable parameters?

nn.Conv2d(16, 32, 3, padding:[1])

PARAMETER REUSE IN CNNS

30

Total trainable parameters in this Conv2D: 4,640

8,590,065,664Total trainable parameters for comparable dense layer:

why does the Conv2D layer have some many fewer trainable parameters?

parameters are reused!!

each filter is used many times over the input feature map

sparse connectivity

output 𝑖, 𝑗 depend only on inputs in neighborhood of 𝑖, 𝑗

nn.Conv2d(16, 32, 3, padding:[1])

“Positive” View: CNNs have fewer parameters than MLPs with same number of activations

“Negative” View: CNNs do more computations per trainable parameter

TWO KEY CNN CONCEPTS

31

Localized features in the inputs

(e.g., natural images)

Parameter Reuse

(e.g., filter is used many times over input feature map)

OUTLINE FOR SLIDES

• Motivation, applications

• Basic 2D convolution operations

◦ PyTorch 2Dconv layer

• Pooling and stride

• Fashion MNIST example

• Visualization methods

• Some common CNN structures

• Reduced complexity CNN architectures

• Outline of Back-propagation for CNNs
32

POOLING AND

STRIDE

33

TYPICAL CNN STRUCTURES/PATTERNS

34

more channels as you go deeper

need to manage this —

i.e., reduce height and width

need some kind of “down-sampling”

doubling

number of

channels is

common

DOWN-SAMPLING: STRIDE > 1

35

convolution, but the stride is >1

reduces 𝐻, 𝑊

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

DOWN-SAMPLING: AVERAGE POOLING

36

average pooling

layer

like convolution

w/o padding and

1/9 for all 3x3

fixed kernel

coefficients

& stride = pool_size

reduces 𝐻, 𝑊

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

DOWN-SAMPLING: MAX POOLING

37Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

max pooling layer

like convolution,

but take max

element in

kernel support

&stride = pool_size

reduces 𝐻, 𝑊

MAX POOLING EXAMPLE — KERNEL SIZE = (2,2)

38

DOWN-SAMPLING IN PYTORCH

39

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

nn.Conv2d(

 in_channels: int, out_channels: int,

 kernel_size: Union[T, Tuple[T, T]],

 stride: Union[T, Tuple[T, T]] = 1,

 padding: Union[T, Tuple[T, T]] = 0,

 dilation: Union[T, Tuple[T, T]] = 1,

 padding_mode: str = 'zeros’,

 groups: int = 1, bias: bool = True

)

https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html

nn.AvgPool2d(

 kernel_size = (2,2),

 padding = (1,1)

)

dilation is

“spreading” the

2D kernel values

over larger filed

of view

default strides

for max/avg pooling

is kernel_size

DILATION IN CONV2D

40

not as common

nn.Conv2d(dilation: n)

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

OUTLINE FOR SLIDES

• Motivation, applications

• Basic 2D convolution operations

◦ PyTorch 2Dconv layer

• Pooling and stride

• Fashion MNIST example

• Visualization methods

• Some common CNN structures

• Reduced complexity CNN architectures

• Outline of Back-propagation for CNNs
41

EXAMPLE

42

LET’S JUMP IN… PYTORCH

43

fmnist_cnn.py

This achieves ~ 93.5% accuracy

on Fashion MNSIT

(compare to ~88% with MLP)

Layer (type) Output Shape Param #

===

conv2d (Conv2D) (None, 28, 28, 32) 320

activation (Activation) (None, 28, 28, 32) 0

batch_normalization (BatchNo (None, 28, 28, 32) 128

conv2d_1 (Conv2D) (None, 28, 28, 32) 9248

activation_1 (Activation) (None, 28, 28, 32) 0

batch_normalization_1 (Batch (None, 28, 28, 32) 128

max_pooling2d (MaxPooling2D) (None, 14, 14, 32) 0

dropout (Dropout) (None, 14, 14, 32) 0

conv2d_2 (Conv2D) (None, 14, 14, 64) 18496

activation_2 (Activation) (None, 14, 14, 64) 0

batch_normalization_2 (Batch (None, 14, 14, 64) 256

conv2d_3 (Conv2D) (None, 14, 14, 64) 36928

activation_3 (Activation) (None, 14, 14, 64) 0

batch_normalization_3 (Batch (None, 14, 14, 64) 256

max_pooling2d_1 (MaxPooling2 (None, 7, 7, 64) 0

dropout_1 (Dropout) (None, 7, 7, 64) 0

flatten (Flatten) (None, 3136) 0

dense (Dense) (None, 512) 1606144

activation_4 (Activation) (None, 512) 0

batch_normalization_4 (Batch (None, 512) 2048

dropout_2 (Dropout) (None, 512) 0

dense_1 (Dense) (None, 10) 5130

activation_5 (Activation) (None, 10) 0

===

Total params: 1,679,082

Trainable params: 1,677,674

Non-trainable params: 1,408

LET’S JUMP IN… PYTORCH

44

CNN MLP

THIS IS A TYPICAL BLOCK-BASED CNN PATTERN

45

CNN building block

CNN Classifier

OUTLINE FOR SLIDES

• Motivation, applications

• Basic 2D convolution operations

◦ PyTorch 2Dconv layer

• Pooling and stride

• Fashion MNIST example

• Visualization methods

• Some common CNN structures

• Reduced complexity CNN architectures

• Outline of Back-propagation for CNNs
46

VISUALIZATION

47

DOGS VS. CATS

48

DOGS VS. CATS

49

Dataset available here

https://www.kaggle.com/c/dogs-vs-cats

let’s explore a simple CNN and see if we can get some

insight into what the filters are looking for and how they

respond to a given input image

https://www.kaggle.com/c/dogs-vs-cats

DOGS-V-CATS: CATS AND DOGS – CNN.IPYNB

50

--

 Layer (type) Output Shape Param #

==

 Conv2d-1 [-1, 32, 150, 150] 896

 Conv2d-2 [-1, 64, 150, 150] 18,496

 MaxPool2d-3 [-1, 64, 75, 75] 0

 Conv2d-4 [-1, 128, 75, 75] 73,856

 Conv2d-5 [-1, 128, 75, 75] 147,584

 MaxPool2d-6 [-1, 128, 37, 37] 0

 Conv2d-7 [-1, 256, 37, 37] 295,168

 Conv2d-8 [-1, 512, 37, 37] 1,180,160

 MaxPool2d-9 [-1, 512, 18, 18] 0

 Conv2d-10 [-1, 512, 18, 18] 2,359,808

 Conv2d-11 [-1, 512, 18, 18] 2,359,808

 MaxPool2d-12 [-1, 512, 8, 8] 0

 Dropout2d-13 [-1, 32768] 0

 Linear-14 [-1, 512] 16,777,728

 Linear-15 [-1, 1] 513

==

Total params: 23,214,017

Trainable params: 23,214,017

Non-trainable params: 0

DOGS-V-CATS: VISUALIZING CNN FEATURE MAPS

51

input image Cats and Dogs – viz.ipynb

1st conv2D

2nd conv2D

DOGS-V-CATS: VISUALIZING CNN FEATURE MAPS

52

Cats and Dogs – viz.ipynb

3rd conv2D

DOGS-V-CATS: VISUALIZING CNN FEATURE MAPS

53

Cats and Dogs – viz.ipynb

4th conv2D

DOGS-V-CATS: MAX FILTER RESPONSE

54

train an input image so that it maximizes

the output energy in a particular filter

channel 16 channel 71 channel 121

Cats and Dogs – viz.ipynb

CNN VISUALIZATION: GRAD-CAM

55

Gradient Weighted Class Activation Mapping

pyimagesearch tutorial (keras)

demo
https://github.com/kazuto1011/grad-cam-pytorch

see where a layer is “looking” for a given class

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-based localization."

Proceedings of the IEEE international conference on computer vision. 2017.

https://github.com/kazuto1011/grad-cam-pytorch

OUTLINE FOR SLIDES

• Motivation, applications

• Basic 2D convolution operations

◦ PyTorch 2Dconv layer

• Pooling and stride

• Fashion MNIST example

• Visualization methods

• Some common CNN structures

• Reduced complexity CNN architectures

• Outline of Back-propagation for CNNs
56

BLOCK

STRUCTURES

57

CNNS: USE WHEN FEATURE INFORMATION IS LOCALIZED

58

2012: AlexNet

• ~60M parameters

• 16.4% top-5 error

2014: VGG

• ~140M parameters

• 10% top-5 error

2015: Inception (aka GoogLeNet)

• ~4M parameters

• ~7% top-5 error

2015 ResNet

• ~60M parameters

• ~7% top-5 error

The leap that transformed AI research—

and possibly the world

RECEPTIVE FIELD AS WE GO DEEPER

59

deeper in the network, each pixel in

the feature map can “see” more of

the input image

reason why height and width of the

feature map can be reduced as we

go deeper

Lin, Haoning, Zhenwei Shi, and Zhengxia Zou. "Maritime semantic labeling of optical remote sensing images with multi-

scale fully convolutional network." Remote sensing 9.5 (2017): 480.

deeper into the network

RECEPTIVE FIELD AS WE GO DEEPER

60

simple script to find input pixels that can affect output pixels for a

specific CNN architecture (pytorch-receptive-field)

class Net(nn.Module):

 def __init__(self):

 super(Net, self).__init__()

 self.conv = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)

 self.bn = nn.BatchNorm2d(64)

 self.relu = nn.ReLU(inplace=True)

 self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

 def forward(self, x):

 y = self.conv(x)

 y = self.bn(y)

 y = self.relu(y)

 y = self.maxpool(y)

 return y

receptive_field_dict = receptive_field(model, (3, 256, 256))

receptive_field_for_unit(receptive_field_dict, ’2’, (2,2))

--
 Layer (type) map size start jump receptive_field
==
 0 [256, 256] 0.5 1.0 1.0
 1 [128, 128] 0.5 2.0 7.0
 2 [128, 128] 0.5 2.0 7.0
 3 [128, 128] 0.5 2.0 7.0
 4 [64, 64] 0.5 4.0 11.0
==
Receptive field size for layer 2, unit_position (1, 1), is
 [(0, 6.0), (0, 6.0)]

Lin, Haoning, Zhenwei Shi, and Zhengxia Zou. "Maritime semantic labeling of optical remote sensing images with multi-

scale fully convolutional network." Remote sensing 9.5 (2017): 480.

RECEPTIVE FIELD AS WE GO DEEPER

61

this could also be computed by hand

by book-keeping the inverse image of

each conv2D and pool layer
pytorch-receptive-field

inverse image

receptive field

simple script to find input pixels that can affect output pixels for a

specific CNN architecture

POPULAR CNN ARCHITECTURES/PATTERNS

62

There are pretrained ImageNet models in PyTorch

(“model-zoo”)

https://pytorch.org/docs/stable/torchvision/models.html

COMMON CNN ARCHITECTURE PATTERNS - VGG16

63
Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale

image recognition." arXiv preprint arXiv:1409.1556 (2014).

COMMON CNN ARCHITECTURE PATTERNS – RESNET(S)

64

residual connections:

aid in gradient flow

(reduce vanishing

gradient)

allow learning of

“alternative” networks

— e.g., can learn to bypass

the two “weight layers” in

this figure

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

COMMON CNN ARCHITECTURE PATTERNS – RESNET(S)

65

ResNet34

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

COMMON CNN ARCHITECTURE PATTERNS – RESNET(S)

66

Note:

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

there are v2

versions of

these

COMMON CNN ARCHITECTURE PATTERNS - INCEPTION

67

aka GoogLeNet

Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference

on computer vision and pattern recognition. 2015.

USING FIXED CNN LAYERS FOR A DIFFERENT CV TASK

68

features needed for many CV tasks are similar to Imagenet classification features

you can reuse all or part of the feature extraction network

import torchvision.models as models

model = models.resnet50(pretrained=True)

ONE LAST LAYER TYPE: GLOBAL POOLING

pool over the pixels in

a channel

this is used after the last conv2D/pool layer before the

“flatten” in many recent models

reduces the complexity of the dense classification network

without sacrificing performance

torch.nn.MaxPool2d(kernel_size=image_size)

torch.nn.AvgPool2d(kernel_size=image_size)

follow with: x.squeeze()

Input: 4D tensor with shape (batch_size, rows, cols, channels)

Output: 2D tensor with shape (batch_size, channels)

69

OUTLINE FOR SLIDES

• Motivation, applications

• Basic 2D convolution operations

◦ PyTorch 2Dconv layer

• Pooling and stride

• Fashion MNIST example

• Visualization methods

• Some common CNN structures

• Reduced complexity CNN architectures

• Outline of Back-propagation for CNNs
70

REDUCING

COMPLEXITY

71

REDUCED PARAMETER/COMPUTATION APPROACHES

72

For larger CNNs, the number of parameters is so large, that

storage complexity becomes a significant issue

this is an issue for running these models in inference mode on mobile devices

computational complexity (during inference and training)

is also an issue

there has been a lot of work on reducing the storage and computational

complexity of CNNs — most have focused on inference of trained models

REDUCED PARAMETER/COMPUTATION APPROACHES

73

Two primary methods:

constrained filter structures: alter the standard conv2D

operations to lower the computational/storage complexity

post-training processing to reduce complexity

CONSTRAINED FILTERING: DEPTH-WISE CONVOLUTION

74

only do convolution separately for channels

— i.e., no information is mixed across channels

=

CONSTRAINED FILTERING: GROUPWISE CONVOLUTION

75

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural

networks." Advances in neural information processing systems. 2012.

trade-off between standard conv2D filtering and

depth-wise filtering

use more of these grouped-filters to get more

output channels

CONSTRAINED FILTERING: POINTWISE CONVOLUTION

76

1 𝑥 1 𝑥 𝐶𝑖𝑛

standard Conv2D with filter size 1x1

a.k.a., 1x1 convolution

EXAMPLE: MOBILENET

77

combine depth-wise convolution with many 1x1 convolutions

compare with standard Conv2D:

4,640 parameters

with standard

approach

16, 3x3 depth-wise kernels:

32, 1x1 point-wise filters:

32, biases:

144

512

32

688 parameters

for same output

feature map size

Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." arXiv preprint arXiv:1704.04861 (2017).

Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks." Proceedings of the IEEE conference on

computer vision and pattern recognition. 2018.

EXAMPLE: SHUFFLENET

78

group-wise convolutions with shuffling

Zhang, Xiangyu, et al. "Shufflenet: An extremely efficient convolutional neural network for mobile devices." Proceedings

of the IEEE conference on computer vision and pattern recognition. 2018. APA

shuffle across channelsmultiple grouped convolutions

EXAMPLE: PRE-DEFINED SPARSITY

79

pre-define some of the filter coefficients to be zero and

hold fixed through training and inference

targets specialized hardware acceleration — project concept is to map this to GPU

Kundu, Souvik, et al. "Pre-defined Sparsity for Low-Complexity Convolutional Neural Networks." IEEE Transactions on Computers (2020).

EXAMPLE: PRE-DEFINED SPARSITY

80Kundu, Souvik, et al. "Pre-defined Sparsity for Low-Complexity Convolutional Neural Networks." IEEE Transactions on Computers (2020).

POST-TRAINING APPROACHES

81

post-training processing to minimize complexity

Pruning: set near-zero weights to zero, fix these and do some retraining

Quantization: map similar valued weights to the same value to save storage

Binaryization: find a set of binary weights that best approximate

the trained network behavior

Yang, Tien-Ju, Yu-Hsin Chen, and Vivienne Sze. "Designing energy-efficient convolutional neural networks using

energy-aware pruning." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.

Zhou, Aojun, et al. "Incremental network quantization: Towards lossless CNNs with low-precision weights."

arXiv preprint arXiv:1702.03044 (2017).

Rastegari, Mohammad, et al. "Xnor-net: Imagenet classification using binary convolutional neural networks."

European conference on computer vision. Springer, Cham, 2016.

OUTLINE FOR SLIDES

• Motivation, applications

• Basic 2D convolution operations

◦ PyTorch 2Dconv layer

• Pooling and stride

• Fashion MNIST example

• Visualization methods

• Some common CNN structures

• Reduced complexity CNN architectures

• Back-propagation for CNNs
82

CNN BACK

PROPAGATION

83

BACK-PROPAGATION IN CNNS

84

recall the definition of a standard Conv2D operation:

chain rule:

shorthand:

𝑦 𝑖, 𝑗, 𝑘 = ෍

𝑐

෍

(𝑚,𝑛)

ℎ𝑐,𝑘 𝑚, 𝑛 𝑥 𝑖 + 𝑚, 𝑗 + 𝑛, 𝑐

ℎ𝑐,𝑘 𝑚, 𝑛 = 2D kernel for input channel 𝑐, output channel 𝑘

𝜕𝐶

𝜕𝑥 𝑖, 𝑗, 𝑘
= ෍

𝑖′,𝑗′,𝑘′

𝜕𝑦 𝑖′, 𝑗′, 𝑘′

𝜕𝑥 𝑖, 𝑗, 𝑘

𝜕𝐶

𝜕𝑦 𝑖′, 𝑗′, 𝑘′

𝜕𝑣 𝑖, 𝑗, 𝑘 ≜
𝜕𝐶

𝜕𝑣 𝑖, 𝑗, 𝑘
𝜕𝑥 𝑖, 𝑗, 𝑘 ≜ ෍

𝑖′,𝑗′,𝑘′

𝜕𝑦 𝑖′, 𝑗′, 𝑘′

𝜕𝑥[𝑖, 𝑗, 𝑘]
𝛿𝑦 𝑖′, 𝑗′, 𝑘′

which values of ℎ are involved here?

BACK-PROPAGATION IN CNNS

85

Let’s start with the 2D convolution only…

chain-rule term:

𝑦 𝑖′, 𝑗′ = ෍

𝑚,𝑛

ℎ 𝑚, 𝑛 𝑥 𝑖′ + 𝑚, 𝑗′ + 𝑛

= ෍

𝑠,𝑡

ℎ 𝑠 − 𝑖′, 𝑡 − 𝑗′ 𝑥 𝑠, 𝑡

𝛿𝑥 𝑖, 𝑗 = ෍

𝑖′,𝑗′

𝜕𝑦[𝑖′, 𝑗′]

𝜕𝑥[𝑖, 𝑗]
𝛿𝑦 𝑖′, 𝑗′

𝜕𝑦[𝑖′, 𝑗′]

𝜕𝑥[𝑖, 𝑗]
= ℎ 𝑖 − 𝑖′, 𝑗 − 𝑗′

𝑠 = 𝑖′ + 𝑚

𝑡 = 𝑗′ + 𝑛

𝛿𝑥 𝑖, 𝑗 = ෍

𝑖′,𝑗′

ℎ 𝑖 − 𝑖′, 𝑗 − 𝑗′ 𝑥 𝑖′, 𝑗′

= ෍

𝑚,𝑛

ℎ −𝑚, −𝑛 𝛿𝑦 𝑖 + 𝑚, 𝑗 + 𝑛

𝑚 = 𝑖′ − 𝑖

𝑛 = 𝑗′ − 𝑗

BACK-PROPAGATION IN CNNS

86

recall: W-transpose in MLP-BP

forward: convolve with ℎ[𝑖, 𝑗]

back-prop: convolve with ℎ[−𝑖, −𝑗]

forward: convolve with ℎ[𝑖, 𝑗]

back-prop: convolve with ℎ[−𝑖, −𝑗]

𝑦 𝑖, 𝑗 = ෍

𝑚,𝑛

ℎ 𝑚, 𝑛 𝑥 𝑖 + 𝑚, 𝑗 + 𝑛

𝛿𝑥 𝑖, 𝑗 = ෍

𝑚,𝑛

ℎ −𝑚, −𝑛 𝛿𝑦 𝑖 + 𝑚, 𝑗 + 𝑛

𝛅 𝑙 = ሶ𝐚 𝑙 𝐖(𝑙+1) 𝑇
𝛅 𝑙+1

BACK-PROPAGATION IN CNNS

87

this extends to the standard Conv2D convolution

standard 2DConv with

reflected 2D kernels

𝑚 = 𝑖′ − 𝑖
𝑛 = 𝑗′ − 𝑗

𝑦 𝑖′, 𝑗′, 𝑘′ = ෍

𝑘

෍

(𝑚,𝑛)

ℎ𝑘,𝑘′ 𝑚, 𝑛 𝑥 𝑖′ + 𝑚, 𝑗′ + 𝑛, 𝑘

𝛿𝑥 𝑖, 𝑗, 𝑘 = ෍

𝑖′,𝑗′,𝑘′

𝜕𝑦 𝑖′, 𝑗′, 𝑘′

𝜕𝑥 𝑖, 𝑗, 𝑘
𝛿𝑦 𝑖′, 𝑗′, 𝑘′

𝜕𝑦 𝑖′, 𝑗′, 𝑘′

𝜕𝑥 𝑖, 𝑗, 𝑘
= ℎ𝑘,𝑘′ 𝑖 − 𝑖′, 𝑗 − 𝑗′

𝛿𝑥 𝑖, 𝑗, 𝑘 = ෍

𝑖′,𝑗′,𝑘′

ℎ𝑘,𝑘′ 𝑖 − 𝑖′, 𝑗 − 𝑗′ 𝛿𝑦 𝑖′, 𝑗′, 𝑘′

= ෍

𝑚,𝑛,𝑘′

ℎ𝑘,𝑘′ −𝑚, −𝑛 𝛿𝑦 𝑖 + 𝑚, 𝑗 + 𝑛, 𝑘′

𝑖 = 𝑖′ + 𝑚
𝑗 = 𝑗′ + 𝑛

BACK-PROPAGATION IN CNNS: POOLING

88

average pooling:

max pooling:

forward: 𝑄 “pixels” averaged

back-prop: 1/𝑄 times the gradient flows back through theses 𝑄 “pixels”

forward: max over 𝑄 “pixels” 𝑖∗, 𝑗∗ ∼ argmax

back-prop: gradient flows directly through 𝑖∗, 𝑗∗ only

non-differentiable….
just a convention that
works!

results from standard

differentiation

CNN/CV RELATED TOPICS

89

Image segmentation (e.g., U-Net)

Object Detection (e.g., YOLO)

GANs (e.g., “deep fakes”)

	Slide 1: Convolutional Neural Networks
	Slide 2: Outline for Slides
	Slide 3: ConvNets
	Slide 4: (Types of Neural Networks)
	Slide 5: CNNs are Widely Used, Especially in Vision Tasks
	Slide 6: CNNs are Widely Used, Especially in Vision Tasks
	Slide 7: CNNs are Widely Used, Especially in Vision Tasks
	Slide 8: CNNs: Use When Feature Information is Localized
	Slide 9: CNNs: Use When Feature Information is Localized
	Slide 10: CNNs: Changing What is Possible WITH CV
	Slide 11: CNNs: 1D, 2D, 3D
	Slide 12: Outline for Slides
	Slide 13: 2D Convolution
	Slide 14: 2D Convolution Operations
	Slide 15: 2D Convolution Operations
	Slide 16: 2D Convolution Operations
	Slide 17: Traditional 2D Image Filters
	Slide 18: 2D Convolution Operations — Padding
	Slide 19: 2D Convolution Operations — Padding
	Slide 20: Convolution operations — Padding with layers
	Slide 21: 2D Convolution Operations
	Slide 22: 3D Convolution
	Slide 23: Conv2D Filtering in Deep Learning
	Slide 24: Conv2D Filtering in Deep Learning
	Slide 25: Conv2D Filtering in Deep Learning
	Slide 26: Conv2D Layer
	Slide 27: Conv2D Layer in PyTorch
	Slide 28: Conv2D Layer in PyTorch
	Slide 29: Conv2D Layer in PyTorch
	Slide 30: Parameter Reuse in CNNs
	Slide 31: Two Key CNN Concepts
	Slide 32: Outline for Slides
	Slide 33: Pooling and Stride
	Slide 34: Typical CNN Structures/Patterns
	Slide 35: Down-Sampling: Stride > 1
	Slide 36: Down-Sampling: Average Pooling
	Slide 37: Down-Sampling: Max Pooling
	Slide 38: Max Pooling Example — kernel size = (2,2)
	Slide 39: Down-Sampling in PyTorch
	Slide 40: Dilation in Conv2d
	Slide 41: Outline for Slides
	Slide 42: Example
	Slide 43: Let’s Jump In… PyTorch
	Slide 44: Let’s Jump In… PyTorch
	Slide 45: This is a Typical Block-Based CNN Pattern
	Slide 46: Outline for Slides
	Slide 47: Visualization
	Slide 48: Dogs vs. Cats 😃
	Slide 49: Dogs vs. Cats 😃
	Slide 50: Dogs-v-Cats: Cats and Dogs – CNN.ipynb
	Slide 51: Dogs-v-Cats: Visualizing CNN Feature Maps
	Slide 52: Dogs-v-Cats: Visualizing CNN Feature Maps
	Slide 53: Dogs-v-Cats: Visualizing CNN Feature Maps
	Slide 54: Dogs-v-Cats: Max Filter Response
	Slide 55: CNN Visualization: Grad-CAM
	Slide 56: Outline for Slides
	Slide 57: Block Structures
	Slide 58: CNNs: Use When Feature Information is Localized
	Slide 59: Receptive Field as We Go Deeper
	Slide 60: Receptive Field as We Go Deeper
	Slide 61: Receptive Field as We Go Deeper
	Slide 62: Popular CNN Architectures/Patterns
	Slide 63: Common CNN Architecture Patterns - VGG16
	Slide 64: Common CNN Architecture Patterns – ResNet(s)
	Slide 65: Common CNN Architecture Patterns – ResNet(s)
	Slide 66: Common CNN Architecture Patterns – ResNet(s)
	Slide 67: Common CNN Architecture Patterns - Inception
	Slide 68: Using Fixed CNN Layers for a Different CV Task
	Slide 69: One Last Layer Type: Global Pooling
	Slide 70: Outline for Slides
	Slide 71: Reducing Complexity
	Slide 72: Reduced Parameter/Computation Approaches
	Slide 73: Reduced Parameter/Computation Approaches
	Slide 74: Constrained Filtering: Depth-wise Convolution
	Slide 75: Constrained Filtering: Groupwise Convolution
	Slide 76: Constrained Filtering: Pointwise Convolution
	Slide 77: Example: MobileNet
	Slide 78: Example: ShuffleNet
	Slide 79: Example: Pre-Defined Sparsity
	Slide 80: Example: Pre-Defined Sparsity
	Slide 81: Post-Training Approaches
	Slide 82: Outline for Slides
	Slide 83: CNN Back Propagation
	Slide 84: Back-propagation in CNNs
	Slide 85: Back-propagation in CNNs
	Slide 86: Back-propagation in CNNs
	Slide 87: Back-propagation in CNNs
	Slide 88: Back-propagation in CNNs: Pooling
	Slide 89: CNN/CV Related topics

